DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification

In this work, we present a fully automated lung computed tomography (CT) cancer diagnosis system, DeepLung. DeepLung consists of two components, nodule detection (identifying the locations of candidate nodules) and classification (classifying candidate nodules into benign or malignant). Considering...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE Winter Conference on Applications of Computer Vision (WACV) pp. 673 - 681
Main Authors Zhu, Wentao, Liu, Chaochun, Fan, Wei, Xie, Xiaohui
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2018
Subjects
Online AccessGet full text
DOI10.1109/WACV.2018.00079

Cover

Loading…
Abstract In this work, we present a fully automated lung computed tomography (CT) cancer diagnosis system, DeepLung. DeepLung consists of two components, nodule detection (identifying the locations of candidate nodules) and classification (classifying candidate nodules into benign or malignant). Considering the 3D nature of lung CT data and the compactness of dual path networks (DPN), two deep 3D DPN are designed for nodule detection and classification respectively. Specifically, a 3D Faster Regions with Convolutional Neural Net (R-CNN) is designed for nodule detection with 3D dual path blocks and a U-net-like encoder-decoder structure to effectively learn nodule features. For nodule classification, gradient boosting machine (GBM) with 3D dual path network features is proposed. The nodule classification subnetwork was validated on a public dataset from LIDC-IDRI, on which it achieved better performance than state-of-the-art approaches and surpassed the performance of experienced doctors based on image modality. Within the DeepLung system, candidate nodules are detected first by the nodule detection subnetwork, and nodule diagnosis is conducted by the classification subnetwork. Extensive experimental results demonstrate that DeepLung has performance comparable to experienced doctors both for the nodule-level and patient-level diagnosis on the LIDC-IDRI dataset.
AbstractList In this work, we present a fully automated lung computed tomography (CT) cancer diagnosis system, DeepLung. DeepLung consists of two components, nodule detection (identifying the locations of candidate nodules) and classification (classifying candidate nodules into benign or malignant). Considering the 3D nature of lung CT data and the compactness of dual path networks (DPN), two deep 3D DPN are designed for nodule detection and classification respectively. Specifically, a 3D Faster Regions with Convolutional Neural Net (R-CNN) is designed for nodule detection with 3D dual path blocks and a U-net-like encoder-decoder structure to effectively learn nodule features. For nodule classification, gradient boosting machine (GBM) with 3D dual path network features is proposed. The nodule classification subnetwork was validated on a public dataset from LIDC-IDRI, on which it achieved better performance than state-of-the-art approaches and surpassed the performance of experienced doctors based on image modality. Within the DeepLung system, candidate nodules are detected first by the nodule detection subnetwork, and nodule diagnosis is conducted by the classification subnetwork. Extensive experimental results demonstrate that DeepLung has performance comparable to experienced doctors both for the nodule-level and patient-level diagnosis on the LIDC-IDRI dataset.
Author Liu, Chaochun
Xie, Xiaohui
Zhu, Wentao
Fan, Wei
Author_xml – sequence: 1
  givenname: Wentao
  surname: Zhu
  fullname: Zhu, Wentao
– sequence: 2
  givenname: Chaochun
  surname: Liu
  fullname: Liu, Chaochun
– sequence: 3
  givenname: Wei
  surname: Fan
  fullname: Fan, Wei
– sequence: 4
  givenname: Xiaohui
  surname: Xie
  fullname: Xie, Xiaohui
BookMark eNotjr1OwzAYRY0EAy3MDCx-gQS7n3_ZogQKUlQ68LMgVZb9BSKldpU4A29PK5ju1ZHu0V2Q85giEnLDWck5s3cfVf1erhg3JWNM2zOy4BKMEsYoeUk-G8RDO8eve3pqFBrazG6gW5e_6QbzRLs00mrOae8yBrqdh32KbvyhmxTmAY-rjD73KVIXA60HN01913t3QlfkonPDhNf_uSRvjw-v9VPRvqyf66oteq5lLrTkhgUwngnbgbVBeGcUZx3XqK0H5CqAD05LEUCHICyAY8wHtWKKKwtLcvvn7RFxdxj7_fHgzoAU3AD8AlHOTf0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WACV.2018.00079
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538648865
9781538648865
EndPage 681
ExternalDocumentID 8354183
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-75180d38c049f399d4ca8610f17e79c3e16d3cda754d37dd4933a00cd62061693
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-75180d38c049f399d4ca8610f17e79c3e16d3cda754d37dd4933a00cd62061693
PageCount 9
ParticipantIDs ieee_primary_8354183
PublicationCentury 2000
PublicationDate 2018-Mar
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-Mar
PublicationDecade 2010
PublicationTitle 2018 IEEE Winter Conference on Applications of Computer Vision (WACV)
PublicationTitleAbbrev WACV
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.2244592
Snippet In this work, we present a fully automated lung computed tomography (CT) cancer diagnosis system, DeepLung. DeepLung consists of two components, nodule...
SourceID ieee
SourceType Publisher
StartPage 673
SubjectTerms Cancer
Computed tomography
Feature extraction
Lung
Neural networks
Three-dimensional displays
Title DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification
URI https://ieeexplore.ieee.org/document/8354183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwIxEG2Akyc1YPxODx5d2KWlu_VGQEKMEA6iHExIdztNjGSX4Pagv95pFyExHrw1TZo2nTbvTftmhpAb6IUGcdapGlWCDooxgULUCQQ3POYi08pHuU6mYjznD4veokZud7EwAODFZ9B2Tf-Xr4vMuqeyjnukwCNYJ3V03KpYrW22niiUnZf-4NlptZw4MvTSrH25FI8Wo0My-ZmnEom8t22ZtrOvXykY_7uQI9Lax-XR2Q5xjkkN8iZ5HQKsH_HO3lHXomxIh1at6Ay5HZ1C-UGRl9K-LQskp6DpzK7w6KnNJ50W2q4AR5Vej5VTlWvqq2Q6_ZA3WYvMR_dPg3GwrZkQvCERKAP3ixJqlmTI_A2SD80zlSBFMlEMscwYREIztEDc45rFWnPJmArDTIsuIruQ7IQ08iKHU0LjREdMo3ti0pAbEFIJkLKb8li6OtX6jDTdzizXVVqM5XZTzv_uviAHzjaVfOuSNMqNhSvE8zK99ob8Bn96oN4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwUa7H_VGQIIKCwdQDiakrK-JkWwEt4P-9b52CInx4K1p0mzpa_N9bb_vPUJuwHc14qxRNcoIDyhaOxJRxwm45iEPEiWty3UYB_0Jf5z60wq53XhhAMCKz6BhmvYtX2VJYa7KmuaSApfgDtn1jRm3dGut8_V4rmi-tDvPRq1l5JGuFWdtC6ZYvOgdkOHPl0qZyHujyOeN5OtXEsb__sohqW-deXS0wZwjUoG0Rl67AMsB7to7alqUdWm3kAs6QnZHY8g_KDJT2i7yDOkpKDoqFrj45OqTxpkqFoCjcqvISqlMFbV1Mo2CyAatTia9-3Gn76yrJjhvSAVyx7yjuIpFCXJ_jfRD8URGSJK0F0IoEgZeoBjGIPS5YqFSXDAmXTdRQQuxPRDsmFTTLIUTQsNIeUzhAUXPXa4hEDIAIVpzHgpTqVqdkpqZmdmyTIwxW0_K2d_d12SvPx4OZoOH-Omc7Js4lWKuC1LNVwVcIrrn8ysb1G8SpqQm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Winter+Conference+on+Applications+of+Computer+Vision+%28WACV%29&rft.atitle=DeepLung%3A+Deep+3D+Dual+Path+Nets+for+Automated+Pulmonary+Nodule+Detection+and+Classification&rft.au=Zhu%2C+Wentao&rft.au=Liu%2C+Chaochun&rft.au=Fan%2C+Wei&rft.au=Xie%2C+Xiaohui&rft.date=2018-03-01&rft.pub=IEEE&rft.spage=673&rft.epage=681&rft_id=info:doi/10.1109%2FWACV.2018.00079&rft.externalDocID=8354183