Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers

Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb face images such that the perturbed images cannot be reliably used by an attribute classifier (e.g., a gender classifier) but can still be us...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS) pp. 1 - 10
Main Authors Mirjalili, Vahid, Raschka, Sebastian, Ross, Arun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2018
Online AccessGet full text

Cover

Loading…
Abstract Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb face images such that the perturbed images cannot be reliably used by an attribute classifier (e.g., a gender classifier) but can still be used by a face matcher for matching purposes. However, the generalizability of SANs across multiple arbitrary gender classifiers has not been demonstrated in the literature. In this work, we tackle the generalization issue by designing an ensemble SAN model that generates a diverse set of perturbed outputs for a given input face image. This is accomplished by enforcing diversity among the individual models in the ensemble through the use of different data augmentation techniques. The goal is to ensure that at least one of the perturbed output faces will confound an arbitrary, previously unseen gender classifier. Extensive experiments using different unseen gender classifiers and face matchers are performed to demonstrate the efficacy of the proposed paradigm in imparting gender privacy to face images.
AbstractList Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb face images such that the perturbed images cannot be reliably used by an attribute classifier (e.g., a gender classifier) but can still be used by a face matcher for matching purposes. However, the generalizability of SANs across multiple arbitrary gender classifiers has not been demonstrated in the literature. In this work, we tackle the generalization issue by designing an ensemble SAN model that generates a diverse set of perturbed outputs for a given input face image. This is accomplished by enforcing diversity among the individual models in the ensemble through the use of different data augmentation techniques. The goal is to ensure that at least one of the perturbed output faces will confound an arbitrary, previously unseen gender classifier. Extensive experiments using different unseen gender classifiers and face matchers are performed to demonstrate the efficacy of the proposed paradigm in imparting gender privacy to face images.
Author Raschka, Sebastian
Ross, Arun
Mirjalili, Vahid
Author_xml – sequence: 1
  givenname: Vahid
  surname: Mirjalili
  fullname: Mirjalili, Vahid
  organization: Computer Science & Engineering, Michigan State University, East Lansing, USA
– sequence: 2
  givenname: Sebastian
  surname: Raschka
  fullname: Raschka, Sebastian
  organization: Department of Statistics, University of Wisconsin - Madison, USA
– sequence: 3
  givenname: Arun
  surname: Ross
  fullname: Ross, Arun
  organization: Computer Science & Engineering, Michigan State University, East Lansing, USA
BookMark eNotkMtKAzEYRqMoWGsfQNzkBab-uUwu7sahXqCo0LouaeaPRKcZSWqlb2_Brs7qO3ycS3KWhoSEXDOYMgb29n7ZLKYcmJkaZY2C-oRMrDasFkZpZoCdkhGXWlZWWXtBJqV8AgBTnDMmRgQfMXWY6VuOO-f3d7RJdJYKbtY90iHQBW4ibbod5uJydD19we3vkL8KDUOm7ZDC8JO6mD5ok9dxm13e06Oy7V0pMcTD9IqcB9cXnBw5Ju8Ps2X7VM1fH5_bZl5FputtpaXhpjNWcPBarr1yXigJNXCmBXpUGHSQQXJhrHaOa1Cd1MCsB2sCeDEmN__eiIir7xw3hz-rYxjxB7D8WGA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BTAS.2018.8698605
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISBN 9781538671801
1538671808
EISSN 2474-9699
EndPage 10
ExternalDocumentID 8698605
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-74828d89320c74bc6ac3640502173ece6ef7f4f423897aa2706d47019c098f0c3
IEDL.DBID RIE
IngestDate Mon Nov 04 12:08:39 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-74828d89320c74bc6ac3640502173ece6ef7f4f423897aa2706d47019c098f0c3
PageCount 10
ParticipantIDs ieee_primary_8698605
PublicationCentury 2000
PublicationDate 2018-Oct.
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationTitle 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS)
PublicationTitleAbbrev BTAS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001622113
Score 1.9723892
Snippet Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb...
SourceID ieee
SourceType Publisher
StartPage 1
Title Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers
URI https://ieeexplore.ieee.org/document/8698605
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1zIPjkxyZ-kwcfbdc2aZr6NmVjCBvCNtjbyMctFLWTrRPmrzdJ64big2-lNElJWu5J7rnnIHQbxpJBzIXHJCUe1VJ7MgqZp6lItQy0jl3GdDhigyl9msWzBrrb1sIAgCOfgW8vXS5fL9TaHpV1OEs5s4Kle0maVrVau_MUFpm9DKkTl2GQdh4m3bHlbnG_bvfDQMXFj_4hGn6PXNFGXvx1KX31-UuU8b-vdoTau0o9_LyNQceoAcUJ2q8MJjctBJVTnHkk_xBqc4-7Be4VK3iTr4AXGR7DW46dJ_NK2C8RjypW-AobLIvtGNZ1yfSMu0uZuwp9XHfp3DTzzDppt9G035s8DrzaWMHLDVoorX5oxLVBKlGgEioVE4owg9zs_oSAAgZZktHMIC2eJkJEScA0tbrtKkh5FihyiprFooAzhCnRJFEhASApFcz83QGnCsI4y0JtsNw5atnJmr9X2hnzep4u_r59iQ7sglVkuSvULJdruDZBv5Q3brW_AHcIrHU
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG2IxuiTFzDe7YOPDra16zrf0EBQgZgACW-kl2_JogwDwwR_ve02IRoffFua9ZJ2S0_7ne8chG68QDIIuHCYpMShWmpH-h5zNBWRlq7WQR4x7fVZZ0SfxsG4gm7XuTAAkJPPoG4f81i-nqmlvSprcBZxZgVLtw2u5qzI1trcqDDfnGZIGbr03KhxP2wOLHuL18uaPyxU8h2kvY96330XxJHX-jKTdfX5S5bxv4M7QLVNrh5-We9Ch6gC6RHaKSwmV1UEhVeceSX5EGp1h5spbqULmMo3wLMYD2Ca4NyVeSHst4j7BS98gQ2axbYP67tkWsbNuUzyHH1cNpn7aSax9dKuoVG7NXzoOKW1gpMYvJBZBVGfa4NVfFeFVComFGEGu9kTCgEFDOIwprHBWjwKhfBDl2lqlduVG_HYVeQYbaWzFE4QpkSTUHkEgERUMPN_u5wq8II49rRBc6eoaidr8l6oZ0zKeTr7u_ga7XaGve6k-9h_Pkd7dvEK6twF2srmS7g0ECCTV_nKfwGqjK_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+9th+International+Conference+on+Biometrics+Theory%2C+Applications+and+Systems+%28BTAS%29&rft.atitle=Gender+Privacy%3A+An+Ensemble+of+Semi+Adversarial+Networks+for+Confounding+Arbitrary+Gender+Classifiers&rft.au=Mirjalili%2C+Vahid&rft.au=Raschka%2C+Sebastian&rft.au=Ross%2C+Arun&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2474-9699&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FBTAS.2018.8698605&rft.externalDocID=8698605