Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers
Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb face images such that the perturbed images cannot be reliably used by an attribute classifier (e.g., a gender classifier) but can still be us...
Saved in:
Published in | 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS) pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Online Access | Get full text |
Cover
Loading…
Abstract | Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb face images such that the perturbed images cannot be reliably used by an attribute classifier (e.g., a gender classifier) but can still be used by a face matcher for matching purposes. However, the generalizability of SANs across multiple arbitrary gender classifiers has not been demonstrated in the literature. In this work, we tackle the generalization issue by designing an ensemble SAN model that generates a diverse set of perturbed outputs for a given input face image. This is accomplished by enforcing diversity among the individual models in the ensemble through the use of different data augmentation techniques. The goal is to ensure that at least one of the perturbed output faces will confound an arbitrary, previously unseen gender classifier. Extensive experiments using different unseen gender classifiers and face matchers are performed to demonstrate the efficacy of the proposed paradigm in imparting gender privacy to face images. |
---|---|
AbstractList | Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb face images such that the perturbed images cannot be reliably used by an attribute classifier (e.g., a gender classifier) but can still be used by a face matcher for matching purposes. However, the generalizability of SANs across multiple arbitrary gender classifiers has not been demonstrated in the literature. In this work, we tackle the generalization issue by designing an ensemble SAN model that generates a diverse set of perturbed outputs for a given input face image. This is accomplished by enforcing diversity among the individual models in the ensemble through the use of different data augmentation techniques. The goal is to ensure that at least one of the perturbed output faces will confound an arbitrary, previously unseen gender classifier. Extensive experiments using different unseen gender classifiers and face matchers are performed to demonstrate the efficacy of the proposed paradigm in imparting gender privacy to face images. |
Author | Raschka, Sebastian Ross, Arun Mirjalili, Vahid |
Author_xml | – sequence: 1 givenname: Vahid surname: Mirjalili fullname: Mirjalili, Vahid organization: Computer Science & Engineering, Michigan State University, East Lansing, USA – sequence: 2 givenname: Sebastian surname: Raschka fullname: Raschka, Sebastian organization: Department of Statistics, University of Wisconsin - Madison, USA – sequence: 3 givenname: Arun surname: Ross fullname: Ross, Arun organization: Computer Science & Engineering, Michigan State University, East Lansing, USA |
BookMark | eNotkMtKAzEYRqMoWGsfQNzkBab-uUwu7sahXqCo0LouaeaPRKcZSWqlb2_Brs7qO3ycS3KWhoSEXDOYMgb29n7ZLKYcmJkaZY2C-oRMrDasFkZpZoCdkhGXWlZWWXtBJqV8AgBTnDMmRgQfMXWY6VuOO-f3d7RJdJYKbtY90iHQBW4ibbod5uJydD19we3vkL8KDUOm7ZDC8JO6mD5ok9dxm13e06Oy7V0pMcTD9IqcB9cXnBw5Ju8Ps2X7VM1fH5_bZl5FputtpaXhpjNWcPBarr1yXigJNXCmBXpUGHSQQXJhrHaOa1Cd1MCsB2sCeDEmN__eiIir7xw3hz-rYxjxB7D8WGA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BTAS.2018.8698605 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISBN | 9781538671801 1538671808 |
EISSN | 2474-9699 |
EndPage | 10 |
ExternalDocumentID | 8698605 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-74828d89320c74bc6ac3640502173ece6ef7f4f423897aa2706d47019c098f0c3 |
IEDL.DBID | RIE |
IngestDate | Mon Nov 04 12:08:39 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-74828d89320c74bc6ac3640502173ece6ef7f4f423897aa2706d47019c098f0c3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8698605 |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct. |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS) |
PublicationTitleAbbrev | BTAS |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001622113 |
Score | 1.9723892 |
Snippet | Recent research has proposed the use of Semi Adversarial Networks (SAN) for imparting privacy to face images. SANs are convolutional autoencoders that perturb... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
Title | Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding Arbitrary Gender Classifiers |
URI | https://ieeexplore.ieee.org/document/8698605 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1zIPjkxyZ-kwcfbdc2aZr6NmVjCBvCNtjbyMctFLWTrRPmrzdJ64big2-lNElJWu5J7rnnIHQbxpJBzIXHJCUe1VJ7MgqZp6lItQy0jl3GdDhigyl9msWzBrrb1sIAgCOfgW8vXS5fL9TaHpV1OEs5s4Kle0maVrVau_MUFpm9DKkTl2GQdh4m3bHlbnG_bvfDQMXFj_4hGn6PXNFGXvx1KX31-UuU8b-vdoTau0o9_LyNQceoAcUJ2q8MJjctBJVTnHkk_xBqc4-7Be4VK3iTr4AXGR7DW46dJ_NK2C8RjypW-AobLIvtGNZ1yfSMu0uZuwp9XHfp3DTzzDppt9G035s8DrzaWMHLDVoorX5oxLVBKlGgEioVE4owg9zs_oSAAgZZktHMIC2eJkJEScA0tbrtKkh5FihyiprFooAzhCnRJFEhASApFcz83QGnCsI4y0JtsNw5atnJmr9X2hnzep4u_r59iQ7sglVkuSvULJdruDZBv5Q3brW_AHcIrHU |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bT8IwGG2IxuiTFzDe7YOPDra16zrf0EBQgZgACW-kl2_JogwDwwR_ve02IRoffFua9ZJ2S0_7ne8chG68QDIIuHCYpMShWmpH-h5zNBWRlq7WQR4x7fVZZ0SfxsG4gm7XuTAAkJPPoG4f81i-nqmlvSprcBZxZgVLtw2u5qzI1trcqDDfnGZIGbr03KhxP2wOLHuL18uaPyxU8h2kvY96330XxJHX-jKTdfX5S5bxv4M7QLVNrh5-We9Ch6gC6RHaKSwmV1UEhVeceSX5EGp1h5spbqULmMo3wLMYD2Ca4NyVeSHst4j7BS98gQ2axbYP67tkWsbNuUzyHH1cNpn7aSax9dKuoVG7NXzoOKW1gpMYvJBZBVGfa4NVfFeFVComFGEGu9kTCgEFDOIwprHBWjwKhfBDl2lqlduVG_HYVeQYbaWzFE4QpkSTUHkEgERUMPN_u5wq8II49rRBc6eoaidr8l6oZ0zKeTr7u_ga7XaGve6k-9h_Pkd7dvEK6twF2srmS7g0ECCTV_nKfwGqjK_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+9th+International+Conference+on+Biometrics+Theory%2C+Applications+and+Systems+%28BTAS%29&rft.atitle=Gender+Privacy%3A+An+Ensemble+of+Semi+Adversarial+Networks+for+Confounding+Arbitrary+Gender+Classifiers&rft.au=Mirjalili%2C+Vahid&rft.au=Raschka%2C+Sebastian&rft.au=Ross%2C+Arun&rft.date=2018-10-01&rft.pub=IEEE&rft.eissn=2474-9699&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FBTAS.2018.8698605&rft.externalDocID=8698605 |