Contracting community for computing maximum flow
In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities in the original network. Then, we apply classic algorithms on the contracted network to approximately solve the maximum flow problem. Experime...
Saved in:
Published in | 2012 IEEE International Conference on Granular Computing pp. 651 - 656 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities in the original network. Then, we apply classic algorithms on the contracted network to approximately solve the maximum flow problem. Experimental results show that the efficiency of the proposed algorithm. For sparse networks, the size of network is reduced to 58.38% averagely and the correctness of maximum flow is over 95%. For middle dense networks, the size of network is reduced to 65.77% averagely. For dense networks, the size of network is reduced to 64.84% averagely. And the correctness of maximum flow even reach 100% both in many middle dense and dense cases in our experiments. |
---|---|
AbstractList | In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities in the original network. Then, we apply classic algorithms on the contracted network to approximately solve the maximum flow problem. Experimental results show that the efficiency of the proposed algorithm. For sparse networks, the size of network is reduced to 58.38% averagely and the correctness of maximum flow is over 95%. For middle dense networks, the size of network is reduced to 65.77% averagely. For dense networks, the size of network is reduced to 64.84% averagely. And the correctness of maximum flow even reach 100% both in many middle dense and dense cases in our experiments. |
Author | Shu Zhao Bo Hua Yanping Zhang Xiansheng Xu |
Author_xml | – sequence: 1 surname: Yanping Zhang fullname: Yanping Zhang organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China – sequence: 2 surname: Xiansheng Xu fullname: Xiansheng Xu email: xuxs2012@163.com organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China – sequence: 3 surname: Bo Hua fullname: Bo Hua organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China – sequence: 4 surname: Shu Zhao fullname: Shu Zhao email: zhaoshuzs2002@hotmail.com organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China |
BookMark | eNo1j81KxDAYRSMq6IzdC276Aq3fl_8upegoDLjR9ZBkEolM0iFt0Xl7_8bV5VwOF-6CnOUhe0KuEVpE6G5XpW8pIG0ll1ry7oRUndLIpWKUIcpTsvgHwAtSjeM7ACCwbx0vCfRDnopxU8xvtRtSmnOcDnUYyg_t598-mc-Y5lSH3fBxRc6D2Y2-OuaSvD7cv_SPzfp59dTfrZuISkyNYk5STZFbKjnlYAUXTlAXdHDGBgNaKe-llcprZajQDkDwLQ9WA2y1Ykty87cbvfebfYnJlMPmeJJ9AUlqRj8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/GrC.2012.6468649 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781467323116 146732311X |
EndPage | 656 |
ExternalDocumentID | 6468649 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIB RIC RIE RIL |
ID | FETCH-LOGICAL-i175t-73c628214b264240b545c52cf8fcabfa0877ee6b67e87a258c0054d4fb800d873 |
IEDL.DBID | RIE |
ISBN | 1467323101 9781467323109 |
IngestDate | Wed Jun 26 19:23:36 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-73c628214b264240b545c52cf8fcabfa0877ee6b67e87a258c0054d4fb800d873 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6468649 |
PublicationCentury | 2000 |
PublicationDate | 2012-Aug. |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-Aug. |
PublicationDecade | 2010 |
PublicationTitle | 2012 IEEE International Conference on Granular Computing |
PublicationTitleAbbrev | GrC |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001034681 |
Score | 1.5682079 |
Snippet | In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 651 |
SubjectTerms | Artificial neural networks community contracting Educational institutions maximum flow network |
Title | Contracting community for computing maximum flow |
URI | https://ieeexplore.ieee.org/document/6468649 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7ZdvI0dRO_6cGj7fqRJs15OIcw8eBgt5Gkb2ToOhktfvx6k7SdKB68NWkoSUN4niTv87wAVwY1ciJT6utUJdZUO_RlphM_zFCxCEWoXLq32T2dzsndIl104HqnhUFEF3yGgX10d_n5RlX2qGxECc0o4V3oMs5rrdb3eUqYmLeR025RlljaErWWTk2Zt9eUIR_dbsc2risOmm_-SK7isGXSh1nbqzqk5DmoShmoz1-Gjf_t9j4Mv1V83sMOnw6gg8Uh9Ns0Dl6zqgcQWocqJ5YqnjxVC0bKD8-wWVsyjW39Wryv1tXa0y-btyHMJzeP46nfJFLwV4YdlD5LFDVbq4hIQ38MhEtDm1QaK51pJaQW1hQQkUrKMGMiTjNlmVxOtDR0Ms9YcgS9YlPgMXiC2S1aTlSYaqJQC4ExpzxGkcaSUXYCA_sDlq-1V8ayGfvp39VnsGcnoQ6oO4deua3wwoB8KS_d7H4BONKidA |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGP1UygBTgRZxk4GRpDl8Za4oBdqKoZW6VbZjIwRNUZWI49dj52gFYmCLHSuyY1nv2f7e-wCuDGokSGDiaiwja6rtu4LpyPWZkjRQ3JdFurfRmAym6H6GZw24XmthlFJF8Jny7GNxl58sZW6PyroEEUZQvAXbhlczUqq1NicqfmTeB4V6i9DIEpegNnWqynF9UenH3dtVz0Z2hV711R_pVQp06bdgVPerDCp58fJMePLrl2Xjfzu-B52Njs95XCPUPjRUegCtOpGDU63rNvjWo6qQS6VPjiwlI9mnY_isLZnGtn7BP54X-cLRr8v3Dkz7N5PewK1SKbjPhh9kLo0kMZurAAlDgAyIC0OcJA6lZlpyobm1BVSKCEIVozzETFoulyAtDKFMGI0OoZkuU3UEDqd2k5Yg6WONpNKcqzAmcag4DgUl9Bja9gfM30q3jHk19pO_qy9hZzAZDefDu_HDKezaCSnD686gma1ydW4gPxMXxUx_A-z1pb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Granular+Computing&rft.atitle=Contracting+community+for+computing+maximum+flow&rft.au=Yanping+Zhang&rft.au=Xiansheng+Xu&rft.au=Bo+Hua&rft.au=Shu+Zhao&rft.date=2012-08-01&rft.pub=IEEE&rft.isbn=9781467323109&rft.spage=651&rft.epage=656&rft_id=info:doi/10.1109%2FGrC.2012.6468649&rft.externalDocID=6468649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323109/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323109/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323109/sc.gif&client=summon&freeimage=true |