Contracting community for computing maximum flow

In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities in the original network. Then, we apply classic algorithms on the contracted network to approximately solve the maximum flow problem. Experime...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE International Conference on Granular Computing pp. 651 - 656
Main Authors Yanping Zhang, Xiansheng Xu, Bo Hua, Shu Zhao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities in the original network. Then, we apply classic algorithms on the contracted network to approximately solve the maximum flow problem. Experimental results show that the efficiency of the proposed algorithm. For sparse networks, the size of network is reduced to 58.38% averagely and the correctness of maximum flow is over 95%. For middle dense networks, the size of network is reduced to 65.77% averagely. For dense networks, the size of network is reduced to 64.84% averagely. And the correctness of maximum flow even reach 100% both in many middle dense and dense cases in our experiments.
AbstractList In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities in the original network. Then, we apply classic algorithms on the contracted network to approximately solve the maximum flow problem. Experimental results show that the efficiency of the proposed algorithm. For sparse networks, the size of network is reduced to 58.38% averagely and the correctness of maximum flow is over 95%. For middle dense networks, the size of network is reduced to 65.77% averagely. For dense networks, the size of network is reduced to 64.84% averagely. And the correctness of maximum flow even reach 100% both in many middle dense and dense cases in our experiments.
Author Shu Zhao
Bo Hua
Yanping Zhang
Xiansheng Xu
Author_xml – sequence: 1
  surname: Yanping Zhang
  fullname: Yanping Zhang
  organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China
– sequence: 2
  surname: Xiansheng Xu
  fullname: Xiansheng Xu
  email: xuxs2012@163.com
  organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China
– sequence: 3
  surname: Bo Hua
  fullname: Bo Hua
  organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China
– sequence: 4
  surname: Shu Zhao
  fullname: Shu Zhao
  email: zhaoshuzs2002@hotmail.com
  organization: Sch. of Comput. Sci. & Technol., Anhui Univ., Hefei, China
BookMark eNo1j81KxDAYRSMq6IzdC276Aq3fl_8upegoDLjR9ZBkEolM0iFt0Xl7_8bV5VwOF-6CnOUhe0KuEVpE6G5XpW8pIG0ll1ry7oRUndLIpWKUIcpTsvgHwAtSjeM7ACCwbx0vCfRDnopxU8xvtRtSmnOcDnUYyg_t598-mc-Y5lSH3fBxRc6D2Y2-OuaSvD7cv_SPzfp59dTfrZuISkyNYk5STZFbKjnlYAUXTlAXdHDGBgNaKe-llcprZajQDkDwLQ9WA2y1Ykty87cbvfebfYnJlMPmeJJ9AUlqRj8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GrC.2012.6468649
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781467323116
146732311X
EndPage 656
ExternalDocumentID 6468649
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-i175t-73c628214b264240b545c52cf8fcabfa0877ee6b67e87a258c0054d4fb800d873
IEDL.DBID RIE
ISBN 1467323101
9781467323109
IngestDate Wed Jun 26 19:23:36 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-73c628214b264240b545c52cf8fcabfa0877ee6b67e87a258c0054d4fb800d873
PageCount 6
ParticipantIDs ieee_primary_6468649
PublicationCentury 2000
PublicationDate 2012-Aug.
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-Aug.
PublicationDecade 2010
PublicationTitle 2012 IEEE International Conference on Granular Computing
PublicationTitleAbbrev GrC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001034681
Score 1.5682079
Snippet In this paper, we propose a novel method named Contracting Community Approach (CCA) to get the maximum flow of flow network. Firstly, we contract communities...
SourceID ieee
SourceType Publisher
StartPage 651
SubjectTerms Artificial neural networks
community
contracting
Educational institutions
maximum flow
network
Title Contracting community for computing maximum flow
URI https://ieeexplore.ieee.org/document/6468649
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGH7ZdvI0dRO_6cGj7fqRJs15OIcw8eBgt5Gkb2ToOhktfvx6k7SdKB68NWkoSUN4niTv87wAVwY1ciJT6utUJdZUO_RlphM_zFCxCEWoXLq32T2dzsndIl104HqnhUFEF3yGgX10d_n5RlX2qGxECc0o4V3oMs5rrdb3eUqYmLeR025RlljaErWWTk2Zt9eUIR_dbsc2risOmm_-SK7isGXSh1nbqzqk5DmoShmoz1-Gjf_t9j4Mv1V83sMOnw6gg8Uh9Ns0Dl6zqgcQWocqJ5YqnjxVC0bKD8-wWVsyjW39Wryv1tXa0y-btyHMJzeP46nfJFLwV4YdlD5LFDVbq4hIQ38MhEtDm1QaK51pJaQW1hQQkUrKMGMiTjNlmVxOtDR0Ms9YcgS9YlPgMXiC2S1aTlSYaqJQC4ExpzxGkcaSUXYCA_sDlq-1V8ayGfvp39VnsGcnoQ6oO4deua3wwoB8KS_d7H4BONKidA
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwGP1UygBTgRZxk4GRpDl8Za4oBdqKoZW6VbZjIwRNUZWI49dj52gFYmCLHSuyY1nv2f7e-wCuDGokSGDiaiwja6rtu4LpyPWZkjRQ3JdFurfRmAym6H6GZw24XmthlFJF8Jny7GNxl58sZW6PyroEEUZQvAXbhlczUqq1NicqfmTeB4V6i9DIEpegNnWqynF9UenH3dtVz0Z2hV711R_pVQp06bdgVPerDCp58fJMePLrl2Xjfzu-B52Njs95XCPUPjRUegCtOpGDU63rNvjWo6qQS6VPjiwlI9mnY_isLZnGtn7BP54X-cLRr8v3Dkz7N5PewK1SKbjPhh9kLo0kMZurAAlDgAyIC0OcJA6lZlpyobm1BVSKCEIVozzETFoulyAtDKFMGI0OoZkuU3UEDqd2k5Yg6WONpNKcqzAmcag4DgUl9Bja9gfM30q3jHk19pO_qy9hZzAZDefDu_HDKezaCSnD686gma1ydW4gPxMXxUx_A-z1pb8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Granular+Computing&rft.atitle=Contracting+community+for+computing+maximum+flow&rft.au=Yanping+Zhang&rft.au=Xiansheng+Xu&rft.au=Bo+Hua&rft.au=Shu+Zhao&rft.date=2012-08-01&rft.pub=IEEE&rft.isbn=9781467323109&rft.spage=651&rft.epage=656&rft_id=info:doi/10.1109%2FGrC.2012.6468649&rft.externalDocID=6468649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323109/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323109/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323109/sc.gif&client=summon&freeimage=true