An LMI Approach to Robust Controller Design for AVR System

This paper develops stability and performance preserving H 2 and H infin controller reduction methods to a PID controller for linear continuous time-invariant single-input, single-output systems. Several cost functions such as the two and infinity norms of the error between complementary sensitivity...

Full description

Saved in:
Bibliographic Details
Published in2008 40th Southeastern Symposium on System Theory (SSST) pp. 17 - 24
Main Authors Aghaie, Z., Amirifar, R.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2008
Subjects
Online AccessGet full text
ISBN9781424418060
1424418062
ISSN0094-2898
DOI10.1109/SSST.2008.4480182

Cover

Loading…
Abstract This paper develops stability and performance preserving H 2 and H infin controller reduction methods to a PID controller for linear continuous time-invariant single-input, single-output systems. Several cost functions such as the two and infinity norms of the error between complementary sensitivity functions, input sensitivity functions and loop gain functions of nominal closed-loop system and the system using reduced-order controller are considered for the optimization problem. The error between these transfer functions are converted to a frequency weighted error between the Youla parameters of the full-order and reduced-order controllers. Then, the H 2 and H infin norm of this error, subject to a set of linear matrix inequality constraints, is minimized. The main ideas of order reduction to a PID controller and stability preservation are contained in the constraints of the optimization problem. However, since this minimization problem is nonconvex, the Youla parameter of the reduced-order controller is obtained by solving a suboptimal linear matrix inequality problem that is convex and readily solved using existing semi-definite programming solvers. The method is tested for an uncertain model of an AVR system. A robust controller is designed for the AVR system and it is reduced to a low-order controller using the proposed controller order reduction methods.
AbstractList This paper develops stability and performance preserving H 2 and H infin controller reduction methods to a PID controller for linear continuous time-invariant single-input, single-output systems. Several cost functions such as the two and infinity norms of the error between complementary sensitivity functions, input sensitivity functions and loop gain functions of nominal closed-loop system and the system using reduced-order controller are considered for the optimization problem. The error between these transfer functions are converted to a frequency weighted error between the Youla parameters of the full-order and reduced-order controllers. Then, the H 2 and H infin norm of this error, subject to a set of linear matrix inequality constraints, is minimized. The main ideas of order reduction to a PID controller and stability preservation are contained in the constraints of the optimization problem. However, since this minimization problem is nonconvex, the Youla parameter of the reduced-order controller is obtained by solving a suboptimal linear matrix inequality problem that is convex and readily solved using existing semi-definite programming solvers. The method is tested for an uncertain model of an AVR system. A robust controller is designed for the AVR system and it is reduced to a low-order controller using the proposed controller order reduction methods.
Author Amirifar, R.
Aghaie, Z.
Author_xml – sequence: 1
  givenname: Z.
  surname: Aghaie
  fullname: Aghaie, Z.
  organization: Tarbiat Modares Univ., Tehran
– sequence: 2
  givenname: R.
  surname: Amirifar
  fullname: Amirifar, R.
  organization: Tarbiat Modares Univ., Tehran
BookMark eNpVj81Kw0AURkesYFv7AOJmXiDx3vkfdyFWLUSEprotmelUI2kmJHHRt7dgN64-zuZwvhmZtLENhNwipIhg78uy3KQMwKRCGEDDLsjCaoOCCYEGtL78xwomZApgRcKMNddkNgzfAKAUk1PykLW0eF3RrOv6WPkvOka6ju5nGGke27GPTRN6-hiG-rOl-9jT7GNNy-MwhsMNudpXzRAW552T96flJn9JirfnVZ4VSY1ajolmJnCBXAtpnHbKoN_5UAUErlBKr63zO4bc6uqU7PQpFJlTXmvLUAbP5-Tuz1uHELZdXx-q_rg9X-e_s1NJjg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/SSST.2008.4480182
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424418077
1424418070
EndPage 24
ExternalDocumentID 4480182
Genre orig-research
GroupedDBID -~X
29O
29Q
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-728e34137458b7b681cdceae1036155c79bcd21397a814b709412b6c779215ec3
IEDL.DBID RIE
ISBN 9781424418060
1424418062
ISSN 0094-2898
IngestDate Wed Aug 27 02:49:00 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-728e34137458b7b681cdceae1036155c79bcd21397a814b709412b6c779215ec3
PageCount 8
ParticipantIDs ieee_primary_4480182
PublicationCentury 2000
PublicationDate 2008-March
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-March
PublicationDecade 2000
PublicationTitle 2008 40th Southeastern Symposium on System Theory (SSST)
PublicationTitleAbbrev SSST
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0006625
ssj0000453901
Score 1.66177
Snippet This paper develops stability and performance preserving H 2 and H infin controller reduction methods to a PID controller for linear continuous time-invariant...
SourceID ieee
SourceType Publisher
StartPage 17
SubjectTerms Control systems
Cost function
Error correction
Frequency conversion
H infinity control
Linear matrix inequalities
Robust control
Stability
Three-term control
Transfer functions
Title An LMI Approach to Robust Controller Design for AVR System
URI https://ieeexplore.ieee.org/document/4480182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDDiNk5cP9iqQlUQRagP1K2KH5EQKEElWfj12HFSCmJgS7I4Pku-7-6--w6AS41pEGtKkSaRRCQJKZJKaGRclSnSiVJlwm38SEdzcr_oLRrgat0LY4wpyWem4x7LWr7OVOFSZV3itE64vXC3bODme7XW-RQLTSKxQe-gNPTTCwRBNqjgdVMX5gENa62n6r0ud-JAdKfT6cxTLKvVfoxdKb3OcBeM6__1ZJPXTpHLjvr8JeX43w3tgfZ3fx98WnuufdAw6QHY2ZAmbIHrfgofxnewX2mOwzyDk0wWHzkceHb7m1nBm5L_AS3whf3nCfTy520wH97OBiNUzVlALxY85IiF3DhnxkiPSyYpx0orExtsvZuFG4oJqXTooGJsbSaZNSkOJVWMCQsYjIoOQTPNUnMEIDd2P5Il5ewbrIKYJExzrWNJNBVcHoOWs8Ly3UtpLCsDnPz9-RRse3qGo3ydgWa-Ksy5xQC5vCgP_wtTXKb-
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWqcgAuLC1ixweOuM3i2g63qlC10FSoC-qtipdICJSgklz4euw4KQVx4BbnkngUZZ5n3nsDwLV0iRNJQpDEPkc49gjiIpBImS6TL2MhioJbOCaDOX5YdBY1cLPWwiilCvKZapnLopcvU5GbUlkbG68Tpn-4Wx0jxrVqrXVFRYMTP9ggeBDi2fkFAUb6WMEqWZfLHOJVbk_lump4uk7Qnk6nM0uyLJ_3Y_BKkXf6eyCs3tjSTV5becZb4vOXmeN_t7QPmt8KP_i0zl0HoKaSQ7C7YU7YALfdBI7CIeyWruMwS-Ek5flHBnuW3_6mVvCuYIBADX1h93kCrQF6E8z797PeAJWTFtCLhg8Zoh5TJp1R3GGccsJcIYWKlKvzmwYcggZcSM-AxUjHjFMdUtfjRFAaaMighH8E6kmaqGMAmdL74TQupt-4wolwTCWTMuJYkoDxE9AwUVi-WzONZRmA079vX4HtwSwcLUfD8eMZ2LFkDUMAOwf1bJWrC40IMn5ZfAhfRKiqRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+40th+Southeastern+Symposium+on+System+Theory+%28SSST%29&rft.atitle=An+LMI+Approach+to+Robust+Controller+Design+for+AVR+System&rft.au=Aghaie%2C+Z.&rft.au=Amirifar%2C+R.&rft.date=2008-03-01&rft.pub=IEEE&rft.isbn=9781424418060&rft.issn=0094-2898&rft.spage=17&rft.epage=24&rft_id=info:doi/10.1109%2FSSST.2008.4480182&rft.externalDocID=4480182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2898&client=summon