Image multi-noise removal by wavelet-based Bayesian estimator

Images are in many cases degraded even before they are encoded. The major noise sources, in terms of distributions, are Gaussian noise, Poisson noise and impulse noise. Noise acquired by images during transmission would be Gaussian in distribution, while images such as emission and transmission tomo...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE International Symposium on Circuits and Systems (ISCAS) pp. 2699 - 2702 Vol. 3
Main Authors Huang, X., Madoc, A.C., Cheetham, A.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Images are in many cases degraded even before they are encoded. The major noise sources, in terms of distributions, are Gaussian noise, Poisson noise and impulse noise. Noise acquired by images during transmission would be Gaussian in distribution, while images such as emission and transmission tomography images, X-ray films, and photographs taken by satellites are usually contaminated by quantum noise, which is Poisson distributed. Poisson shot noise is a natural generalization of a compound Poisson process when the summands are stochastic processes starting at the points of the underlying Poisson process. Unlike additive Gaussian noise, Poisson noise is signal-dependent and consequently separating signal from noise is more difficult. In our previous papers we discussed a wavelet-based maximum likelihood for Bayesian estimator that recovers the signal component of wavelet coefficients in original images using an alpha-stable signal prior distribution. In this paper, it is demonstrated that the method can be extended to multi-noise sources comprising Gaussian, Poisson, and impulse noise. Results of varying the parameters of the Bayesian estimators of the model are presented after an investigation of /spl alpha/-stable simulations for a maximum likelihood estimator. As an example, a colour image is processed and presented to illustrate the effectiveness of this method.
AbstractList Images are in many cases degraded even before they are encoded. The major noise sources, in terms of distributions, are Gaussian noise, Poisson noise and impulse noise. Noise acquired by images during transmission would be Gaussian in distribution, while images such as emission and transmission tomography images, X-ray films, and photographs taken by satellites are usually contaminated by quantum noise, which is Poisson distributed. Poisson shot noise is a natural generalization of a compound Poisson process when the summands are stochastic processes starting at the points of the underlying Poisson process. Unlike additive Gaussian noise, Poisson noise is signal-dependent and consequently separating signal from noise is more difficult. In our previous papers we discussed a wavelet-based maximum likelihood for Bayesian estimator that recovers the signal component of wavelet coefficients in original images using an alpha-stable signal prior distribution. In this paper, it is demonstrated that the method can be extended to multi-noise sources comprising Gaussian, Poisson, and impulse noise. Results of varying the parameters of the Bayesian estimators of the model are presented after an investigation of /spl alpha/-stable simulations for a maximum likelihood estimator. As an example, a colour image is processed and presented to illustrate the effectiveness of this method.
Author Huang, X.
Madoc, A.C.
Cheetham, A.D.
Author_xml – sequence: 1
  givenname: X.
  surname: Huang
  fullname: Huang, X.
  organization: Sch. of Inf. Sci. & Eng., Univ. of Canberra, ACT, Australia
– sequence: 2
  givenname: A.C.
  surname: Madoc
  fullname: Madoc, A.C.
– sequence: 3
  givenname: A.D.
  surname: Cheetham
  fullname: Cheetham, A.D.
BookMark eNotj81KxDAUhYOOYB37ArrpC6TmJr1NunAxllELAy5G10PS3kilP9LUkXl7C87hwLc7H-eGrYZxIMbuQKQAonio9uVmn0ohMIUsRzDqgkUS0HBAiZcsLrQRS5UxKsMVi4TUwDMl5DWLQ_gSSzJUWuYRe6x6-0lJ_9PNLR_GNlAyUT8ebZe4U_Jrj9TRzJ0N1CRP9kShtUNCYW57O4_TLbvytgsUn7lmH8_b9_KV795eqnKz4y1onLmGxgkEZ12tamlq9OBMYx1p0k7rPHPgZGNBel8Xtc8aNLX3xjsNgAWhWrP7_92WiA7f02KfTofzefUHLalObw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCAS.2005.1465183
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2158-1525
EndPage 2702 Vol. 3
ExternalDocumentID 1465183
Genre orig-research
GroupedDBID -~X
29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
AI.
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
JC5
M43
OCL
RIE
RIL
RIO
VH1
ID FETCH-LOGICAL-i175t-71db051babc3c28c5f1b8dabe7e7b7764b1b2da12ffc9cf4d58cff8fb71159e53
IEDL.DBID RIE
ISBN 9780780388345
0780388348
ISSN 0271-4302
IngestDate Wed Jun 26 19:29:01 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-71db051babc3c28c5f1b8dabe7e7b7764b1b2da12ffc9cf4d58cff8fb71159e53
ParticipantIDs ieee_primary_1465183
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE International Symposium on Circuits and Systems (ISCAS)
PublicationTitleAbbrev ISCAS
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000453726
ssj0020062
Score 1.6305907
Snippet Images are in many cases degraded even before they are encoded. The major noise sources, in terms of distributions, are Gaussian noise, Poisson noise and...
SourceID ieee
SourceType Publisher
StartPage 2699
SubjectTerms Additive noise
Bayesian methods
Degradation
Gaussian noise
Maximum likelihood estimation
Satellites
Stochastic processes
Tomography
Wavelet coefficients
X-ray imaging
Title Image multi-noise removal by wavelet-based Bayesian estimator
URI https://ieeexplore.ieee.org/document/1465183
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTrDwaBFvZWDEbRMnsTMwQEXVIhUhlUrdqpx9lirUBJVUqPx6bCctDzGwJVniOPbdfef7viPkSikdROjHFBhHGsoYKRhDSDXrCsV96cdo-c6jx3gwCR-m0bRGrrdcGER0xWfYtpfuLF_lcmVTZR3fNu4WrE7qPElKrtY2n2JCE8ZtKFGBLUsOdPkVbjAS65aQXVjtExaKSnlncx9t2DTdpDMc927HZa6let2PvivO7fT3yGgz4LLa5KW9KqAtP35pOf73i_ZJ64vg5z1tXdcBqWF2SHa_aRM2yc1wYUyN5woOaZbP39Bb4iI3C9ODtfee2oYVBbVOUHl36RotGdOzkh0LC-NbZNK_f-4NaNVrgc5NAFFQ7isw-xNSkEwGQkbaB6FSQI4cOI9D8CFQqR9oLROpQxUJqbXQwE1ImWDEjkgjyzM8Jh4DYFIZI2vATxgqKdA2y0vR_Ik0liBOSNNOxOy1lNOYVXNw-vfjM7Lj1FJd1uOcNIrlCi9MHFDApVsAn-1pq_w
link.rule.ids 310,311,783,787,792,793,799,4059,4060,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gHtSLDzC-7cGjC7TbdpeDByUaUCAmQMKNdHZnE2JoDZYY_PXutgUf8eCt7aXbfcx8M53vG0KulNJegG5IgXGkvgyRgjGEVLOGUNyVboiW79zrh-2R_zgOxiVyvebCIGJWfIY1e5n9y1eJXNhUWd21jbsF2yCbgcUVOVtrnVEx4IRxCyaKcMvSA7MMCzdREmvkQbuw6ifMF4X2zuo-WPFpGs16Z9C6HeTZluKFPzqvZI7nYZf0VkPO601eaosUavLjl5rjf79pj1S_KH7O89p57ZMSxgdk55s6YYXcdGbG2DhZySGNk-kbOnOcJWZrOrB03iPbsiKl1g0q5y5aoqVjOla0Y2YD-SoZPdwPW21adFugUwMhUspdBeaEQgSSSU_IQLsgVATIkQPnoQ8ueCpyPa1lU2pfBUJqLTRwAyqbGLBDUo6TGI-IwwCYVMbMmmXyfSUF2nZ5EZqViEIJ4phU7ERMXnNBjUkxByd_P74kW-1hrzvpdvpPp2Q7007NciBnpJzOF3huUEEKF9lm-AQmw69J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+International+Symposium+on+Circuits+and+Systems+%28ISCAS%29&rft.atitle=Image+multi-noise+removal+by+wavelet-based+Bayesian+estimator&rft.au=Huang%2C+X.&rft.au=Madoc%2C+A.C.&rft.au=Cheetham%2C+A.D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780780388345&rft.issn=0271-4302&rft.eissn=2158-1525&rft.spage=2699&rft.epage=2702+Vol.+3&rft_id=info:doi/10.1109%2FISCAS.2005.1465183&rft.externalDocID=1465183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-4302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-4302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-4302&client=summon