Discrimination of Depression Levels Using Machine Learning Methods on EEG Signals
Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression diagnosis. A precise system which can diagnose the depression levels based on the EEG signal would be useful support. This paper presents a m...
Saved in:
Published in | Iranian Conference on Electrical Engineering pp. 1765 - 1769 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 2642-9527 |
DOI | 10.1109/IranianCEE.2019.8786540 |
Cover
Loading…
Abstract | Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression diagnosis. A precise system which can diagnose the depression levels based on the EEG signal would be useful support. This paper presents a machine learning approach to discriminate the depressed subjects to four different levels of depression, according to the Beck depression inventory (BDI-II) scores, besides the separability of different levels is investigated. In this way, we also proposed a fuzzy function based on neural network (FFNN) classifier. Our dataset contains EEG signals recorded from 60 depressed subjects with different levels of depression, under resting state, and EEG analysis was done using nonlinear features including fuzzy entropy (FuzzyEn), Katz fractal dimension (KFD) and fuzzy fractal dimension (FFD). The results indicate that KFD has a better capability in the prediction of the depression level. The proposed fuzzy classifier has demonstrated significant supremacy compared to support vector machine (SVM) in almost all experiments. |
---|---|
AbstractList | Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression diagnosis. A precise system which can diagnose the depression levels based on the EEG signal would be useful support. This paper presents a machine learning approach to discriminate the depressed subjects to four different levels of depression, according to the Beck depression inventory (BDI-II) scores, besides the separability of different levels is investigated. In this way, we also proposed a fuzzy function based on neural network (FFNN) classifier. Our dataset contains EEG signals recorded from 60 depressed subjects with different levels of depression, under resting state, and EEG analysis was done using nonlinear features including fuzzy entropy (FuzzyEn), Katz fractal dimension (KFD) and fuzzy fractal dimension (FFD). The results indicate that KFD has a better capability in the prediction of the depression level. The proposed fuzzy classifier has demonstrated significant supremacy compared to support vector machine (SVM) in almost all experiments. |
Author | Moradi, Mohammad Hassan Hajian, Mojtaba Mohammadi, Yousef |
Author_xml | – sequence: 1 givenname: Yousef surname: Mohammadi fullname: Mohammadi, Yousef organization: Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran – sequence: 2 givenname: Mojtaba surname: Hajian fullname: Hajian, Mojtaba organization: Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran – sequence: 3 givenname: Mohammad Hassan surname: Moradi fullname: Moradi, Mohammad Hassan organization: Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran |
BookMark | eNotUN1KwzAYjaLgnH0CL-wLtH5f2jTJpXTdHFREdNfja5tskZmOpgi-vZ3u6vxwOHDOLbvyvTeMPSCkiKAf1wN5R76sqpQD6lRJVYgcLlikpULJFaIAqS7ZjBc5T7Tg8oZFIXwCQIZKKS1m7G3hQju4L-dpdL2PexsvzHEwIZxUbb7NIcSb4PwufqF277yZTBr8n2HGfd-FeApW1Sp-dztPh3DHru0EJjrjnG2W1Uf5nNSvq3X5VCcOpRgTiXlBQIBSyRxz1UEHnDJrc6tBFNzK1lIjkE4MG1loBcYq4q2WjS3abM7u_3udMWZ7nDbQ8LM9n5D9AuzqVAQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IranianCEE.2019.8786540 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728115078 1728115078 1728115086 9781728115085 |
EISSN | 2642-9527 |
EndPage | 1769 |
ExternalDocumentID | 8786540 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-7146a0a017874148d0d02a3ff4f90562f7cfab51a2f7c1b76980ef8a2c97bf6c3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:54:28 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-7146a0a017874148d0d02a3ff4f90562f7cfab51a2f7c1b76980ef8a2c97bf6c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8786540 |
PublicationCentury | 2000 |
PublicationDate | 2019-April |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-April |
PublicationDecade | 2010 |
PublicationTitle | Iranian Conference on Electrical Engineering |
PublicationTitleAbbrev | IranianCEE |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003188895 |
Score | 1.7946917 |
Snippet | Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1765 |
SubjectTerms | Complexity theory Depression EEG Electroencephalography Entropy Feature extraction Fractal Dimensions Fractals Fuzzy Entropy Fuzzy Function Nonlinear Systems Support vector machines Time series analysis |
Title | Discrimination of Depression Levels Using Machine Learning Methods on EEG Signals |
URI | https://ieeexplore.ieee.org/document/8786540 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SLe8sBIWidNYntuUx6iCASVulW2Y6MKKUU0Xfj1nJ20PMTAZlm2Yt059_J3dwAXcRQrlcok6HMXrUKFF3Cr88AISUNtqRTao3zv0-tJfDtNpg243OTCGGM8-Mx03dC_5ecLvXKhsh5nPEULowlNdNyqXK1NPAXvJuciqSFcIRW9GxT2SOJBljkEF16JavePNipei4x2YLz-fgUeee2uStXVH79KM_73gLvQ-crXIw8bTbQHDVPsw_a3UoNteBzOnYBwwBfHCrKwZLgGwRbkzkGHlsTjB8jY4ysNqUuv4oTvMr0kuDDLrsjT_MUVXe7AZJQ9D66Dup1CMEcboQwYCkVJkQX4j8boBeU0p5HsWxtb4cwgy7SVKgmlG4WKpYJTY7mMtGDKprp_AK1iUZhDIJIxbZTWjErcjR6eVUzHUc6MZVJrfQRtR5zZW1UxY1bT5fjv6RPYcgyq8DCn0CrfV-YMVX2pzj2PPwEL3asa |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD-rFBxjf9uDRhe6yu23PsAgKRCMk3EjbbQ0xWYwsF3-90-6Cj3jw1jTbpJlp55vOfjOD0E0YhFLGIvJazEarAPA8ZlTqaS6IrwwRXDmW7yjuTcL7aTStoNtNLozW2pHPdMMO3b_8dKFWNlTWZJTF4GFsoW3A_ZAX2VqbiAqcTsZ4VJK4fMKbfTD3IOR2klgOFxyKYv2PRioOR7r7aLjeQUEfeW2sctlQH7-KM_53iweo_pWxhx83WHSIKjo7Qnvfig3W0FNnbk2Epb5YZeCFwZ01DTbDA0seWmLHIMBDx7DUuCy-ChOuz_QSw4dJcoef5y-27HIdTbrJuN3zyoYK3hy8hNyjYBYFASXALQ3hHZSSlASiZUxouHWEDFVGyMgXduRLGnNGtGEiUJxKE6vWMapmi0yfICwoVVoqRYmA1fDGM5KqMEipNlQopU5RzQpn9lbUzJiVcjn7e_oa7fTGw8Fs0B89nKNdq6yCHXOBqvn7Sl8C8Ofyyun7EzROrmo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Iranian+Conference+on+Electrical+Engineering&rft.atitle=Discrimination+of+Depression+Levels+Using+Machine+Learning+Methods+on+EEG+Signals&rft.au=Mohammadi%2C+Yousef&rft.au=Hajian%2C+Mojtaba&rft.au=Moradi%2C+Mohammad+Hassan&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=1765&rft.epage=1769&rft_id=info:doi/10.1109%2FIranianCEE.2019.8786540&rft.externalDocID=8786540 |