Discrimination of Depression Levels Using Machine Learning Methods on EEG Signals

Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression diagnosis. A precise system which can diagnose the depression levels based on the EEG signal would be useful support. This paper presents a m...

Full description

Saved in:
Bibliographic Details
Published inIranian Conference on Electrical Engineering pp. 1765 - 1769
Main Authors Mohammadi, Yousef, Hajian, Mojtaba, Moradi, Mohammad Hassan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2019
Subjects
Online AccessGet full text
ISSN2642-9527
DOI10.1109/IranianCEE.2019.8786540

Cover

Loading…
Abstract Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression diagnosis. A precise system which can diagnose the depression levels based on the EEG signal would be useful support. This paper presents a machine learning approach to discriminate the depressed subjects to four different levels of depression, according to the Beck depression inventory (BDI-II) scores, besides the separability of different levels is investigated. In this way, we also proposed a fuzzy function based on neural network (FFNN) classifier. Our dataset contains EEG signals recorded from 60 depressed subjects with different levels of depression, under resting state, and EEG analysis was done using nonlinear features including fuzzy entropy (FuzzyEn), Katz fractal dimension (KFD) and fuzzy fractal dimension (FFD). The results indicate that KFD has a better capability in the prediction of the depression level. The proposed fuzzy classifier has demonstrated significant supremacy compared to support vector machine (SVM) in almost all experiments.
AbstractList Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression diagnosis. A precise system which can diagnose the depression levels based on the EEG signal would be useful support. This paper presents a machine learning approach to discriminate the depressed subjects to four different levels of depression, according to the Beck depression inventory (BDI-II) scores, besides the separability of different levels is investigated. In this way, we also proposed a fuzzy function based on neural network (FFNN) classifier. Our dataset contains EEG signals recorded from 60 depressed subjects with different levels of depression, under resting state, and EEG analysis was done using nonlinear features including fuzzy entropy (FuzzyEn), Katz fractal dimension (KFD) and fuzzy fractal dimension (FFD). The results indicate that KFD has a better capability in the prediction of the depression level. The proposed fuzzy classifier has demonstrated significant supremacy compared to support vector machine (SVM) in almost all experiments.
Author Moradi, Mohammad Hassan
Hajian, Mojtaba
Mohammadi, Yousef
Author_xml – sequence: 1
  givenname: Yousef
  surname: Mohammadi
  fullname: Mohammadi, Yousef
  organization: Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
– sequence: 2
  givenname: Mojtaba
  surname: Hajian
  fullname: Hajian, Mojtaba
  organization: Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
– sequence: 3
  givenname: Mohammad Hassan
  surname: Moradi
  fullname: Moradi, Mohammad Hassan
  organization: Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
BookMark eNotUN1KwzAYjaLgnH0CL-wLtH5f2jTJpXTdHFREdNfja5tskZmOpgi-vZ3u6vxwOHDOLbvyvTeMPSCkiKAf1wN5R76sqpQD6lRJVYgcLlikpULJFaIAqS7ZjBc5T7Tg8oZFIXwCQIZKKS1m7G3hQju4L-dpdL2PexsvzHEwIZxUbb7NIcSb4PwufqF277yZTBr8n2HGfd-FeApW1Sp-dztPh3DHru0EJjrjnG2W1Uf5nNSvq3X5VCcOpRgTiXlBQIBSyRxz1UEHnDJrc6tBFNzK1lIjkE4MG1loBcYq4q2WjS3abM7u_3udMWZ7nDbQ8LM9n5D9AuzqVAQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IranianCEE.2019.8786540
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728115078
1728115078
1728115086
9781728115085
EISSN 2642-9527
EndPage 1769
ExternalDocumentID 8786540
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-7146a0a017874148d0d02a3ff4f90562f7cfab51a2f7c1b76980ef8a2c97bf6c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:28 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-7146a0a017874148d0d02a3ff4f90562f7cfab51a2f7c1b76980ef8a2c97bf6c3
PageCount 5
ParticipantIDs ieee_primary_8786540
PublicationCentury 2000
PublicationDate 2019-April
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-April
PublicationDecade 2010
PublicationTitle Iranian Conference on Electrical Engineering
PublicationTitleAbbrev IranianCEE
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188895
Score 1.7946917
Snippet Depression is a mental disorder which has direct effects on electroencephalography (EEG) of patients, that made EEG analysis a beneficial way for a depression...
SourceID ieee
SourceType Publisher
StartPage 1765
SubjectTerms Complexity theory
Depression
EEG
Electroencephalography
Entropy
Feature extraction
Fractal Dimensions
Fractals
Fuzzy Entropy
Fuzzy Function
Nonlinear Systems
Support vector machines
Time series analysis
Title Discrimination of Depression Levels Using Machine Learning Methods on EEG Signals
URI https://ieeexplore.ieee.org/document/8786540
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SLe8sBIWidNYntuUx6iCASVulW2Y6MKKUU0Xfj1nJ20PMTAZlm2Yt059_J3dwAXcRQrlcok6HMXrUKFF3Cr88AISUNtqRTao3zv0-tJfDtNpg243OTCGGM8-Mx03dC_5ecLvXKhsh5nPEULowlNdNyqXK1NPAXvJuciqSFcIRW9GxT2SOJBljkEF16JavePNipei4x2YLz-fgUeee2uStXVH79KM_73gLvQ-crXIw8bTbQHDVPsw_a3UoNteBzOnYBwwBfHCrKwZLgGwRbkzkGHlsTjB8jY4ysNqUuv4oTvMr0kuDDLrsjT_MUVXe7AZJQ9D66Dup1CMEcboQwYCkVJkQX4j8boBeU0p5HsWxtb4cwgy7SVKgmlG4WKpYJTY7mMtGDKprp_AK1iUZhDIJIxbZTWjErcjR6eVUzHUc6MZVJrfQRtR5zZW1UxY1bT5fjv6RPYcgyq8DCn0CrfV-YMVX2pzj2PPwEL3asa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG4QD-rFBxjf9uDRhe6yu23PsAgKRCMk3EjbbQ0xWYwsF3-90-6Cj3jw1jTbpJlp55vOfjOD0E0YhFLGIvJazEarAPA8ZlTqaS6IrwwRXDmW7yjuTcL7aTStoNtNLozW2pHPdMMO3b_8dKFWNlTWZJTF4GFsoW3A_ZAX2VqbiAqcTsZ4VJK4fMKbfTD3IOR2klgOFxyKYv2PRioOR7r7aLjeQUEfeW2sctlQH7-KM_53iweo_pWxhx83WHSIKjo7Qnvfig3W0FNnbk2Epb5YZeCFwZ01DTbDA0seWmLHIMBDx7DUuCy-ChOuz_QSw4dJcoef5y-27HIdTbrJuN3zyoYK3hy8hNyjYBYFASXALQ3hHZSSlASiZUxouHWEDFVGyMgXduRLGnNGtGEiUJxKE6vWMapmi0yfICwoVVoqRYmA1fDGM5KqMEipNlQopU5RzQpn9lbUzJiVcjn7e_oa7fTGw8Fs0B89nKNdq6yCHXOBqvn7Sl8C8Ofyyun7EzROrmo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Iranian+Conference+on+Electrical+Engineering&rft.atitle=Discrimination+of+Depression+Levels+Using+Machine+Learning+Methods+on+EEG+Signals&rft.au=Mohammadi%2C+Yousef&rft.au=Hajian%2C+Mojtaba&rft.au=Moradi%2C+Mohammad+Hassan&rft.date=2019-04-01&rft.pub=IEEE&rft.eissn=2642-9527&rft.spage=1765&rft.epage=1769&rft_id=info:doi/10.1109%2FIranianCEE.2019.8786540&rft.externalDocID=8786540