Towards optimal convex combination rules for gossiping

By the distributed averaging problem is meant the problem of computing the average value y avg of a set of numbers possessed by the agents in a distributed network using only communication between neighboring agents. Gossiping is a well-known approach to the problem which seeks to iteratively arrive...

Full description

Saved in:
Bibliographic Details
Published in2013 American Control Conference pp. 1261 - 1265
Main Authors Mangoubi, Oren, Shaoshuai Mou, Ji Liu, Morse, A. Stephen
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text
ISBN1479901776
9781479901777
ISSN0743-1619
DOI10.1109/ACC.2013.6580009

Cover

Abstract By the distributed averaging problem is meant the problem of computing the average value y avg of a set of numbers possessed by the agents in a distributed network using only communication between neighboring agents. Gossiping is a well-known approach to the problem which seeks to iteratively arrive at a solution by allowing each agent to interchange information with at most one neighbor at each iterative step. In the most widely studied situation, gossiping agents i and j update their current estimates x i (t) and x j (t) of y avg by setting their new estimates x i (t+1) and x j (t+1) equal to the average of x i (t) and x j (t). A more general approach is for gossiping agents i and j to use the convex combination update rules x i (t+1) = wx i (t) + (1 - w)x j (t) and x j (t + 1) = wx j (t) + (1 - w)x i (t) respectively where w is a real number between 0 and 1. While for probabilistic gossiping protocols, a largest convergence rate is attained when w = 0.5, for deterministic gossiping protocols this is not the case. The aim of this paper is to demonstrate by computer experiments and analytically studied examples that for deterministic gossiping protocols which are periodic, the value of w which maximizes convergence rate is not necessarily w = 0.5 and moreover, convergence at the optimal value of w can be significantly faster than convergence at the value w = 0.5. Thus this paper's contribution is to provide clear justification for a deeper study of the optimum convergence rate question for gossiping algorithms using convex combination rules.
AbstractList By the distributed averaging problem is meant the problem of computing the average value y avg of a set of numbers possessed by the agents in a distributed network using only communication between neighboring agents. Gossiping is a well-known approach to the problem which seeks to iteratively arrive at a solution by allowing each agent to interchange information with at most one neighbor at each iterative step. In the most widely studied situation, gossiping agents i and j update their current estimates x i (t) and x j (t) of y avg by setting their new estimates x i (t+1) and x j (t+1) equal to the average of x i (t) and x j (t). A more general approach is for gossiping agents i and j to use the convex combination update rules x i (t+1) = wx i (t) + (1 - w)x j (t) and x j (t + 1) = wx j (t) + (1 - w)x i (t) respectively where w is a real number between 0 and 1. While for probabilistic gossiping protocols, a largest convergence rate is attained when w = 0.5, for deterministic gossiping protocols this is not the case. The aim of this paper is to demonstrate by computer experiments and analytically studied examples that for deterministic gossiping protocols which are periodic, the value of w which maximizes convergence rate is not necessarily w = 0.5 and moreover, convergence at the optimal value of w can be significantly faster than convergence at the value w = 0.5. Thus this paper's contribution is to provide clear justification for a deeper study of the optimum convergence rate question for gossiping algorithms using convex combination rules.
Author Mangoubi, Oren
Morse, A. Stephen
Ji Liu
Shaoshuai Mou
Author_xml – sequence: 1
  givenname: Oren
  surname: Mangoubi
  fullname: Mangoubi, Oren
  email: oren18@mit.edu
  organization: Dept. of Math., Massachusetts Inst. of Technol., Cambridge, MA, USA
– sequence: 2
  surname: Shaoshuai Mou
  fullname: Shaoshuai Mou
  email: shaoshuai.mou@yale.edu
  organization: Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
– sequence: 3
  surname: Ji Liu
  fullname: Ji Liu
  email: ji.liu@yale.edu
  organization: Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
– sequence: 4
  givenname: A. Stephen
  surname: Morse
  fullname: Morse, A. Stephen
  email: as.morse@yale.edu
  organization: Dept. of Electr. Eng., Yale Univ., New Haven, CT, USA
BookMark eNo1j8tqwzAQRVWaQuM0-0I3_gGnM5ItWctg-oJAN-k6yNI4qDiSsdzX39fQdHU4m8u5GVuEGIixW4QNIuj7bdNsOKDYyKoGAH3B1lrVWCqtAVUlLln2L0ou2BJUKQqUqK9ZltI7AGotYcnkPn6Z0aU8DpM_mT63MXzS94xT64OZfAz5-NFTyrs45seYkh98ON6wq870idZnrtjb48O-eS52r08vzXZX-DliKhSA1RxVXQsiyWVLUKI1HUfXthXnVelAamttbbhwJLGEjpy2xDU3NXdixe7-dj0RHYZxThx_DufP4herYEoO
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ACC.2013.6580009
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479901753
147990175X
1479901784
9781479901784
EndPage 1265
ExternalDocumentID 6580009
Genre orig-research
GroupedDBID -~X
23M
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-700c9217883ee626be041caf21dbb52254d069ccc8a23de6140fed9ce292a82d3
IEDL.DBID RIE
ISBN 1479901776
9781479901777
ISSN 0743-1619
IngestDate Wed Aug 27 04:21:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-700c9217883ee626be041caf21dbb52254d069ccc8a23de6140fed9ce292a82d3
PageCount 5
ParticipantIDs ieee_primary_6580009
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 American Control Conference
PublicationTitleAbbrev ACC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019960
ssj0001124340
Score 1.5558827
Snippet By the distributed averaging problem is meant the problem of computing the average value y avg of a set of numbers possessed by the agents in a distributed...
SourceID ieee
SourceType Publisher
StartPage 1261
SubjectTerms Convergence
Eigenvalues and eigenfunctions
Probabilistic logic
Protocols
Signal processing algorithms
Tree graphs
Vectors
Title Towards optimal convex combination rules for gossiping
URI https://ieeexplore.ieee.org/document/6580009
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3MjDi1LGdh0dUUSGkIoZW6lb5ca4QfaC2kRC_HttJW0AMTHHiIbEd-bvzffcdQre50oylmcI6LTTm0gosgStsKdWWc21FkNjoP2ePQ_40SkcNdLfNhQGAQD6D2DdDLN8sdOmPyjoOLUnI1ttzv1mVq7U7T3FAxbxuSR1B8KojWwlO5yWEpK7cR4HyPNtoPdX3-SZ-SUTnvtv1hC8W1y_7UXUlgE7vEPU3n1txTd7icq1i_flLyfG_4zlC7V16X_SyBa5j1ID5CTr4pkzYQtkg0GlX0cJtKTM5jQI7_cNdZs6VDqsZLcsprCJn9EYTh7S-BvakjYa9h0H3EdclFvCrsxvWOCdEC-eVFAUDcL6NAsITLS1NjFLONEu5IZnQWheSMgMOy4kFIzRQQWVBDTtFzfliDmcoMkYxC4wpkhmuXLegRKa5VInfJCyco5afgfF7paIxrgd_8ffjS7RPq8ITmCRXqLlelnDt4H-tbsK6fwGam6iM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWqcgAuLC1iJweOOHVtZzuiiqpAW3Fopd4qL5MK0QW1iYT4emwnbQFx4JTtkDiJ_GY8771B6DaSirEglFgFscJcpAkWwCVOKVUp5ypNnMVGrx92hvxpFIwq6G6jhQEARz4D3-66Wr5eqNwulTUMWhKn1tsxuM-DQq21XVExUMWsc0lZQ7C-IxsTTpMnOFlXZOtAURSu3Z7K42hdwSRJ477VspQv5pe3-9F3xcFO-wD11g9csE3e_DyTvvr85eX43xEdovpW4Oe9bKDrCFVgfoz2v3kT1lA4cITalbcwk8pMTD3HT_8wm5lJpt339Jb5FFaeCXu9icFa2wV7UkfD9sOg1cFlkwX8aiKHDEeEqMTkJXHMAEx2I4HwphIpbWopTXAWcE3CRCkVC8o0GDQnKehEAU2oiKlmJ6g6X8zhFHlaS5YCY5KEmktzOaFEBJGQTTtNpHCGavYNjN8LH41xOfjzv0_foN3OoNcddx_7zxdojxZtKDBpXqJqtszhygQDmbx2_8AXp2-r2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+American+Control+Conference&rft.atitle=Towards+optimal+convex+combination+rules+for+gossiping&rft.au=Mangoubi%2C+Oren&rft.au=Shaoshuai+Mou&rft.au=Ji+Liu&rft.au=Morse%2C+A.+Stephen&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479901777&rft.issn=0743-1619&rft.spage=1261&rft.epage=1265&rft_id=info:doi/10.1109%2FACC.2013.6580009&rft.externalDocID=6580009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-1619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-1619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-1619&client=summon