A Multi-Mode Visual Recognition Hardware Accelerator for AR/MR Glasses
A multi-mode visual recognition hardware accelerator for AR/MR glasses is designed in this paper. The accelerator supports state-of-the-art deep neural networks, including DNN, CNN, RNN and LSTM. To achieve higher utilization rate of computational components, the accelerator supports two mapping mod...
Saved in:
Published in | IEEE International Conference on Circuits and Systems (Online) pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-447X |
DOI | 10.1109/ISCAS.2018.8350918 |
Cover
Abstract | A multi-mode visual recognition hardware accelerator for AR/MR glasses is designed in this paper. The accelerator supports state-of-the-art deep neural networks, including DNN, CNN, RNN and LSTM. To achieve higher utilization rate of computational components, the accelerator supports two mapping modes of neural networks to physical computational structures in a single PE (Processing Engine) array: a) 2D systolic flow of both filter and image data, b) each neural network output maps to a PE. The accelerator adaptively chooses the more efficient mapping mode layer by layer, achieving a higher PE utilization rate than single mapping mode accelerators. When benchmarking with Inception-v4 network, the accelerator's PE utilization rate is 79.5%, which is 20 points higher than state-of-the-art embedded accelerators. Higher PE utilization rate contributes to lower latency, higher throughput, less power consumption and smaller chip area. When benchmarking with AlexNet, the accelerator processes 108 images per second, which fully meets the real-time requirement for AR/MR applications. |
---|---|
AbstractList | A multi-mode visual recognition hardware accelerator for AR/MR glasses is designed in this paper. The accelerator supports state-of-the-art deep neural networks, including DNN, CNN, RNN and LSTM. To achieve higher utilization rate of computational components, the accelerator supports two mapping modes of neural networks to physical computational structures in a single PE (Processing Engine) array: a) 2D systolic flow of both filter and image data, b) each neural network output maps to a PE. The accelerator adaptively chooses the more efficient mapping mode layer by layer, achieving a higher PE utilization rate than single mapping mode accelerators. When benchmarking with Inception-v4 network, the accelerator's PE utilization rate is 79.5%, which is 20 points higher than state-of-the-art embedded accelerators. Higher PE utilization rate contributes to lower latency, higher throughput, less power consumption and smaller chip area. When benchmarking with AlexNet, the accelerator processes 108 images per second, which fully meets the real-time requirement for AR/MR applications. |
Author | Guoping Fan Tong Zhou Yunhui Zhu Yaohua Zuo |
Author_xml | – sequence: 1 surname: Yunhui Zhu fullname: Yunhui Zhu email: yunhui.zhu@samsung.com organization: Samsung R&D Inst. China-Beijing, Beijing, China – sequence: 2 surname: Yaohua Zuo fullname: Yaohua Zuo email: yaohua.zuo@samsung.com organization: Samsung R&D Inst. China-Beijing, Beijing, China – sequence: 3 surname: Tong Zhou fullname: Tong Zhou email: t1102.zhou@samsung.com organization: Samsung R&D Inst. China-Beijing, Beijing, China – sequence: 4 surname: Guoping Fan fullname: Guoping Fan email: gp.fan@samsung.com organization: Samsung R&D Inst. China-Beijing, Beijing, China |
BookMark | eNotj81KAzEURqMo2Na-gG7yAtPmTpKbzHIo9gc6CK2KuxIzNxIZZ2QyRfr2Fuzi48BZHPjG7KbtWmLsAcQMQBTzzX5R7me5ADuzUosC7BUbg5YWlbWgrtkol6bIlDLvd2ya0pcQQoIxGtWILUteHZshZlVXE3-L6egaviPffbZxiF3L166vf11PvPSeGurd0PU8nFfu5tWOrxqXEqV7dhtck2h64YS9Lp9eFuts-7zaLMptFsHoIUOLBpVzWGvMDQQsPpwMKlgTApLVEsDLIgdVe-lqBMydl8p4a5A0nuWEPf53IxEdfvr47frT4XJb_gFjzExu |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ISCAS.2018.8350918 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1538648814 9781538648810 |
EISSN | 2379-447X |
EndPage | 5 |
ExternalDocumentID | 8350918 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-686764aa6d56271f69ba3f4f87ff6e85311c39214dc3ad6162ac347c876e56dc3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 08:32:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-686764aa6d56271f69ba3f4f87ff6e85311c39214dc3ad6162ac347c876e56dc3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8350918 |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Conference on Circuits and Systems (Online) |
PublicationTitleAbbrev | ISCAS |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003177564 |
Score | 2.0264494 |
Snippet | A multi-mode visual recognition hardware accelerator for AR/MR glasses is designed in this paper. The accelerator supports state-of-the-art deep neural... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | AR/MR glasses Arrays Bandwidth Clocks Engines Hardware hardware accelerator multi-mode Neural networks PE utilization rate visual recognition Visualization |
Title | A Multi-Mode Visual Recognition Hardware Accelerator for AR/MR Glasses |
URI | https://ieeexplore.ieee.org/document/8350918 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na8JAEB3UU3vph5Z-s4cem2jMZpIcg9TagqVoLd5ks5mAtMSiCYX--s4maj_oobewEBJ2NnmPmfdmAK5CqRKUhBZjnbaY__Mn5WFsucTgE5L20rJd0_ABBxN5P_WmNbjeemGIqBSfkW0uy1p-stCFSZW1mS0wvAV1qPMxq7xa23wK46Dvodz4Yjph-27ci8ZGvBXY6xt_TFApAaS_B8PNoyvdyItd5LGtP351Zfzvu-1D68uqJx63IHQANcoOYfdbl8Em9CNR2mwtM_dMPM9XhXoVo41waJEJU71_V0sSkdaMQmXhXTCZFdGoPRyJW0OwadWCSf_mqTew1uMTrDlzgtzCAH2USmHCHMd3Ugxj5aYyDfw0RWKYdhzN7MiRiXY5YA52lXalr_n_SB7y4hE0skVGxyAcL5WOyT_5MUoOX9jxVOAnAVEYh12FJ9A0OzJ7qzpkzNabcfr38hnsmKhUssFzaOTLgi4Y2vP4sozpJ9MsoZg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPagXH634dg8eTdo0m01yDMXaalukD-mtbDYTKEoqbYLgr3c2aesDD96WhSVhh-T7mPm-GYAbn8tIcBQGYZ0yiP_TJ-WI0LCRwMdH5cR5u6ZeX7TH_GHiTEpwu_HCIGIuPkNTL_NafjRXmU6V1YgtELx5W7BNuM-dwq21yagQErqO4GtnTN2vdYbNYKjlW565OvpjhkoOIa196K0fXihHXswsDU318asv43_f7gCqX2Y99rSBoUMoYXIEe9_6DFagFbDcaGvoyWfsebbM5CsbrKVD84Tp-v27XCALlCIcykvvjOgsCwa13oDda4qNyyqMW3ejZttYDVAwZsQKUkN4whVcShERy3GtWPihtGMee24cCySgtixF_MjikbIpZJZoSGVzV9EfEh1Bm8dQTuYJngCznJhbOgPlhoJTAP26Iz038hD90G9IcQoVfSPTt6JHxnR1GWd_b1_DTnvU6067nf7jOezqCBUiwgsop4sMLwno0_Aqj-8nfGqk5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Circuits+and+Systems+%28Online%29&rft.atitle=A+Multi-Mode+Visual+Recognition+Hardware+Accelerator+for+AR%2FMR+Glasses&rft.au=Yunhui+Zhu&rft.au=Yaohua+Zuo&rft.au=Tong+Zhou&rft.au=Guoping+Fan&rft.date=2018-05-01&rft.pub=IEEE&rft.eissn=2379-447X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISCAS.2018.8350918&rft.externalDocID=8350918 |