An improvement Logistic model based on multiple objective genetic algorithm

Logistic model is one of the classic models for predicting the number of literatures in a special field. This paper studies the logistic model that is used to describe literatures' increasing trend, analyzes the shortcoming of improvement algorithms of logistic model at present, and proposes a...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 4; pp. 2292 - 2295
Main Author Xiao-Yong Liu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text
ISBN9781424437023
1424437024
ISSN2160-133X
DOI10.1109/ICMLC.2009.5212196

Cover

Loading…
Abstract Logistic model is one of the classic models for predicting the number of literatures in a special field. This paper studies the logistic model that is used to describe literatures' increasing trend, analyzes the shortcoming of improvement algorithms of logistic model at present, and proposes a new algorithm, named DGA-logistic algorithm that is based on multiple objective genetic algorithm. For validating the new algorithm, this paper chooses Chinese digital library's literatures, which are published in recent years, as dataset. The numerical experiment showed that DGA-logistic has better forecasting result than improvement algorithms of logistic model at present.
AbstractList Logistic model is one of the classic models for predicting the number of literatures in a special field. This paper studies the logistic model that is used to describe literatures' increasing trend, analyzes the shortcoming of improvement algorithms of logistic model at present, and proposes a new algorithm, named DGA-logistic algorithm that is based on multiple objective genetic algorithm. For validating the new algorithm, this paper chooses Chinese digital library's literatures, which are published in recent years, as dataset. The numerical experiment showed that DGA-logistic has better forecasting result than improvement algorithms of logistic model at present.
Author Xiao-Yong Liu
Author_xml – sequence: 1
  surname: Xiao-Yong Liu
  fullname: Xiao-Yong Liu
  organization: Dept. of Comput. Sci., Guangdong Polytech. Normal Univ., Guangzhou, China
BookMark eNo1kE1OwzAUhI1oJZrSC8DGF0jws2M7XlYRPxVBbEBiV9nuS3CVxFUSKnF7iiizGY30zSwmIbM-9kjIDbAMgJm7TflSlRlnzGSSAwejLkgCOc9zoZngl2RldPGfuZiRBQfFUhDiY06SU68wAEbyK7Iaxz07KZdcK7Egz-uehu4wxCN22E-0ik0Yp-BpF3fYUmdH3NHY0-6rncKhRRrdHv0Ujkgb7PGXtG0ThzB9dtdkXtt2xNXZl-T94f6tfEqr18dNua7SAFpOqSq4rb2zxlmtjUdkptYehHO1RfDei1x57RB3KtfSW6tqJVEWyAtZc5BiSW7_dgMibg9D6OzwvT0fI34AZr1WSA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212196
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1424437032
9781424437030
EndPage 2295
ExternalDocumentID 5212196
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-682afcba9ba779cee09f7c13bbfae1ccc346c7beed6475caa6f65e58e285f2153
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:46 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-682afcba9ba779cee09f7c13bbfae1ccc346c7beed6475caa6f65e58e285f2153
PageCount 4
ParticipantIDs ieee_primary_5212196
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.423865
Snippet Logistic model is one of the classic models for predicting the number of literatures in a special field. This paper studies the logistic model that is used to...
SourceID ieee
SourceType Publisher
StartPage 2292
SubjectTerms Algorithm design and analysis
Computer science
Cybernetics
Digital Library
Genetic Algorithm
Genetic algorithms
Logistic Model
Logistics
Machine learning
Mathematical model
Mathematics
Predictive models
Software libraries
The rule of literatures' increasing
Title An improvement Logistic model based on multiple objective genetic algorithm
URI https://ieeexplore.ieee.org/document/5212196
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTrAU2iLe8sCI2zwcOxlRRVWgRQxU6lbZjg3lkaCSLvx6bOeBQAwMkeIMydm6-B6-7zuA80REaaJSiT0iPGwuhoXgKaaRr1PtsUAIV-V7RydzcrOIFi24aLAwSilXfKYG9tad5ae53NhU2dDiTI3GbMGWCdxKrFaTT7HU4KyiknJjZgIP1zAv8KmHTSi2qHFdITOGqaZ7qsZhDajxkuH1aDYdlVSW1Rd_tF5xlmfcgVktc1lw8jLYFGIgP3_ROf53UrvQ_8b4ofvGeu1BS2Vd6NRNHlD1z3dhZ9YQu3704PYyQyuXh3BpRTR1AKKVRK6jDrI2MUV5huo6RZSL53JLRUZTLWAS8dfHfL0qnt76MB9fPYwmuOrHgFfGySgwjQOupeCJ4IwlRj4v0Uz6oRCaK19KGRIqmTByU8IiyTnVNFJRrII40sa1CPehneWZOgCkjJemVRwTQgRhKjF7si8Jl0R6oX3xIfTsSi3fS8qNZbVIR38_Pobt8pDHVtGeQLtYb9Sp8RUKceaU5Auuerjh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgBLoQXxxgMjafNw4mREFVVLk4qhlbpVtuNAeCSopAu_Htt5IBADQ6TYQ3K2zr7z-b7vAK4D5saBiLlhYmYa8iEGYzQ2PNdK4sQkNmM6y3fmjRf4fukuW3DTYGGEEDr5TPTVq77Lj3O-UaGygcKZSo3Zgm1XgXFLtFYTUVHk4KQik9JtIo8eumSebXmmIQ9jyxrZ5RBpmmrCp6rt1JAaMxhMhlE4LMksq3_-KL6ibc-oA1EtdZly8tLfFKzPP38ROv53WPtw-I3yQw-N_TqAlsi60KnLPKBq1XdhL2qoXT96ML3NUKojETqwiEINIUo50jV1kLKKMcozVGcqopw9l5sqkrqqIJOIvj7m67R4ejuExehuPhwbVUUGI5VuRmF4vk0TzmjAKCGBlM8MEsIth7GECotz7mCPEybl9jBxOaVe4rnC9YXtu4l0LpwjaGd5Jo4BCemnJcL3McYMExHIXdnimHLMTUd9-AR6aqZW7yXpxqqapNO_u69gZzyPwlU4mU3PYLe88lE5tefQLtYbcSE9h4JdaoX5AoWVvCk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=An+improvement+Logistic+model+based+on+multiple+objective+genetic+algorithm&rft.au=Xiao-Yong+Liu&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=4&rft.spage=2292&rft.epage=2295&rft_id=info:doi/10.1109%2FICMLC.2009.5212196&rft.externalDocID=5212196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon