Nonsmooth Optimization for Beamforming in Cognitive Multicast Transmission

It is well-known that the optimal beamforming problems for cognitive multicast transmission are indefinite quadratic (nonconvex) optimization programs. The conventional approach is to reformulate them as convex semi-definite programs (SDPs) with additional rank-one (nonconvex and discontinuous) cons...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE Global Telecommunications Conference GLOBECOM 2010 pp. 1 - 5
Main Authors Phan, A H, Tuan, H D, Kha, H H, Ngo, D T
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2010
Subjects
Online AccessGet full text
ISBN1424456363
9781424456369
ISSN1930-529X
DOI10.1109/GLOCOM.2010.5683915

Cover

Abstract It is well-known that the optimal beamforming problems for cognitive multicast transmission are indefinite quadratic (nonconvex) optimization programs. The conventional approach is to reformulate them as convex semi-definite programs (SDPs) with additional rank-one (nonconvex and discontinuous) constraints. The rank-one constraints are then dropped for relaxed solutions, and randomization techniques are employed for solution search. In many practical cases, this approach fails to deliver satisfactory solutions, i.e., its found solutions are very far from the optimal ones. In contrast, in this paper we cast the optimal beamforming problems as SDPs with the additional reverse convex (but continuous) constraints. An efficient algorithm of nonsmooth optimization is then proposed for seeking the optimal solution. Our simulation results show that the proposed approach yields almost global optimal solutions with much less computational load than the mentioned conventional one.
AbstractList It is well-known that the optimal beamforming problems for cognitive multicast transmission are indefinite quadratic (nonconvex) optimization programs. The conventional approach is to reformulate them as convex semi-definite programs (SDPs) with additional rank-one (nonconvex and discontinuous) constraints. The rank-one constraints are then dropped for relaxed solutions, and randomization techniques are employed for solution search. In many practical cases, this approach fails to deliver satisfactory solutions, i.e., its found solutions are very far from the optimal ones. In contrast, in this paper we cast the optimal beamforming problems as SDPs with the additional reverse convex (but continuous) constraints. An efficient algorithm of nonsmooth optimization is then proposed for seeking the optimal solution. Our simulation results show that the proposed approach yields almost global optimal solutions with much less computational load than the mentioned conventional one.
Author Tuan, H D
Kha, H H
Phan, A H
Ngo, D T
Author_xml – sequence: 1
  givenname: A H
  surname: Phan
  fullname: Phan, A H
  email: z3261071@student.unsw.edu.au
  organization: Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, UNSW, Sydney, NSW, Australia
– sequence: 2
  givenname: H D
  surname: Tuan
  fullname: Tuan, H D
  email: h.d.tuan@unsw.edu.au
  organization: Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, UNSW, Sydney, NSW, Australia
– sequence: 3
  givenname: H H
  surname: Kha
  fullname: Kha, H H
  email: h.k.ha@unsw.edu.au
  organization: Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, UNSW, Sydney, NSW, Australia
– sequence: 4
  givenname: D T
  surname: Ngo
  fullname: Ngo, D T
  email: duy.ngo@mail.mcgill.ca
  organization: Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada
BookMark eNpFkNFKwzAYhSNOcJ0-wW7yAp1J__xtc6lFp9LZmwnejWRLZmRNRhMFfXoLDrz6OAe-c3EyMvHBG0LmnC04Z_Jm2XZNt1oUbCywrEFyPCMZF4UQWELFz_9DCRMy5RJYjoV8uyRZjB-MoaiRT8nzS_CxDyG90-6YXO9-VHLBUxsGemdUP7J3fk-dp03Ye5fcl6Grz0NyWxUTXQ9q1F2Mo3NFLqw6RHN94oy8Ptyvm8e87ZZPzW2bO15hyks0RoPWCjRXoip2O1YxKRC3TIG0dWUMVrXeWSm0ZVICKiM0lFZbjmALmJH5364zxmyOg-vV8L05nQC_h75Smw
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/GLOCOM.2010.5683915
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1424456371
9781424456383
9781424456376
142445638X
EndPage 5
ExternalDocumentID 5683915
Genre orig-research
GroupedDBID 29I
6IE
6IH
6IK
6IM
AAJGR
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-65eeb3bba3b1a472dd0709455c0a39f87ee578bdf94bf09935ae4b36fbf153f23
IEDL.DBID RIE
ISBN 1424456363
9781424456369
ISSN 1930-529X
IngestDate Wed Aug 27 02:53:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-65eeb3bba3b1a472dd0709455c0a39f87ee578bdf94bf09935ae4b36fbf153f23
PageCount 5
ParticipantIDs ieee_primary_5683915
PublicationCentury 2000
PublicationDate 2010-Dec.
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec.
PublicationDecade 2010
PublicationTitle 2010 IEEE Global Telecommunications Conference GLOBECOM 2010
PublicationTitleAbbrev GLOCOM
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0054851
ssj0000507002
Score 1.5263578
Snippet It is well-known that the optimal beamforming problems for cognitive multicast transmission are indefinite quadratic (nonconvex) optimization programs. The...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Array signal processing
Eigenvalues and eigenfunctions
Interference
Optimization
Receivers
Signal to noise ratio
Simulation
Title Nonsmooth Optimization for Beamforming in Cognitive Multicast Transmission
URI https://ieeexplore.ieee.org/document/5683915
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwED4BU7v0AVXf8tCxgRA_iNeiUoQKdCgSG7ITW0IVoWrD0l_fs_PoQx26REkUKfHl4vt8ue87gBs5sC7Oy0AkNAyYpTJQkrMgkVJbhPgp853npjMxXrDJki8bcFtzYYwxvvjMdN2u_5efbpOdS5X1uIidnnkTmuhmBVerzqeECGzCsJaOQiDuWy8iPglxsSWXFamLCypopfVUHstSjqgfyt7D43w4nxY1X-X9fjRe8XFndADT6omLcpOX7i7X3eTjl5jjf4d0CJ0vhh95qmPXETRMdgz738QJ2zCZoUNutvgmyRznlU1J2CSIcsmdURuHdvFCss7IsKpBIp7Pm6j3nPggiE7ksnEdWIzun4fjoOy8EKwRTuSB4AYX2VorqvuKDaI0ReNKxnkSKiptPDAGv3SdWsm0RYxJuTJMU2G1xRnURvQEWtk2M6dAbJ_iikzGCW6ZVUZbxEDKYmBMeSSi9Azaziqr10JcY1Ua5Pzv0xewF9X1JJfQyt925gpRQa6vvTt8ArT4sBo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHtSLDzC-3YNHC6X7gL1KREQKHiDhRnbb3YQYwGi5-Oudbh8-4sFL0zZN2p1Od76dzvcNwI1s2zTOS09E1PeYpdJTkjMvklJbhPgxc53nwpHoT9lgxmcVuC25MMYYV3xmGumu-5cfr6NNmiprctFJ9cy3YBvjPuMZW6vMqPgIbXy_FI9CKO6aLyJC8XG5JWcFrYsLKmih9pQfy1yQqOXL5sNw3B2HWdVXfscfrVdc5OntQ1g8c1Zw8tLYJLoRffySc_zvoA6g_sXxI89l9DqEilkdwd43ecIaDEbokss1vksyxpllmVM2CeJccmfUMsW7eCFZrEi3qEIijtEbqfeEuDCIbpTm4-ow7d1Pun0v773gLRBQJJ7gBpfZWiuqW4q1gzhG40rGeeQrKm2nbQx-6zq2kmmLKJNyZZimwmqLc6gN6DFUV-uVOQFiWxTXZLIT4ZZZZbRFFKQshsaYByKIT6GWWmX-mslrzHODnP19-hp2-pNwOB8-jp7OYTcoq0suoJq8bcwlYoREXznX-AQjUrNn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Global+Telecommunications+Conference+GLOBECOM+2010&rft.atitle=Nonsmooth+Optimization+for+Beamforming+in+Cognitive+Multicast+Transmission&rft.au=Phan%2C+A+H&rft.au=Tuan%2C+H+D&rft.au=Kha%2C+H+H&rft.au=Ngo%2C+D+T&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424456369&rft.issn=1930-529X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FGLOCOM.2010.5683915&rft.externalDocID=5683915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-529X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-529X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-529X&client=summon