Many-to-one contour matching for describing and discriminating object shape
We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that we use long, salient, bottom-up image contours to learn object shape, and to achieve object detection with the learned shape. Most learning m...
Saved in:
Published in | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 1673 - 1680 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that we use long, salient, bottom-up image contours to learn object shape, and to achieve object detection with the learned shape. Most learning methods rely on one-to-one matching of contours to a model. However, bottom-up image contours often fragment unpredictably. We resolve this difficulty by using many-to-one matching of image contours to a model. To learn a descriptive object shape model, we combine bottom-up contours from a few representative images. The goal is to allow most of the contours in the training images to be many-to-one matched to the model. For detection, our challenges are inferring the object contours and part locations, in addition to object location. Because the locations of object parts and matches of contours are not annotated, they appear as latent variables during training. We use the latent SVM learning formulation to discriminatively tune the many-to-one matching score using the max-margin criterion. We evaluate on the challenging ETHZ shape categories dataset and outperform all existing methods. |
---|---|
AbstractList | We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that we use long, salient, bottom-up image contours to learn object shape, and to achieve object detection with the learned shape. Most learning methods rely on one-to-one matching of contours to a model. However, bottom-up image contours often fragment unpredictably. We resolve this difficulty by using many-to-one matching of image contours to a model. To learn a descriptive object shape model, we combine bottom-up contours from a few representative images. The goal is to allow most of the contours in the training images to be many-to-one matched to the model. For detection, our challenges are inferring the object contours and part locations, in addition to object location. Because the locations of object parts and matches of contours are not annotated, they appear as latent variables during training. We use the latent SVM learning formulation to discriminatively tune the many-to-one matching score using the max-margin criterion. We evaluate on the challenging ETHZ shape categories dataset and outperform all existing methods. |
Author | Srinivasan, Praveen Qihui Zhu Jianbo Shi |
Author_xml | – sequence: 1 givenname: Praveen surname: Srinivasan fullname: Srinivasan, Praveen email: psrin@seas.upenn.edu organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA – sequence: 2 surname: Qihui Zhu fullname: Qihui Zhu email: qihuizhu@seas.upenn.edu organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA – sequence: 3 surname: Jianbo Shi fullname: Jianbo Shi email: jshi@cis.upenn.edu organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA |
BookMark | eNpNkFtLw0AQhVetYFP9AeLL_oHUvSf7KMEbVhRR8a3M3uwWu1uS-NB_b4IFfRq-OcOcwynQJOXkETqnZE4p0ZfN-_PLnJEBpeS65uIAFVQwIdQAH4doSonipdJUH_0Jop78E05Q0XVrQhivGJmih0dIu7LP5WCEbU59_m7xBnq7iukTh9xi5zvbRjMiJIddHHETE_TjKpu1tz3uVrD1p-g4wFfnz_Zzht5url-bu3LxdHvfXC3KSCvZl0oyz3mtiTNQmTp4R6zWIRBvlRGVZsEoELKiDBh4bYnl1MBw4jQIXks-Qxe_f6P3frkd0kC7W-4b4T84s1PB |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2010.5539834 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 142446983X 9781424469833 9781424469857 1424469856 |
EISSN | 1063-6919 |
EndPage | 1680 |
ExternalDocumentID | 5539834 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-652e33890dba7b8fed0c99ff0ec6b4792fb6a45712a2ae9c0c31bac99d9a43853 |
IEDL.DBID | RIE |
ISBN | 1424469848 9781424469840 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:49:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-652e33890dba7b8fed0c99ff0ec6b4792fb6a45712a2ae9c0c31bac99d9a43853 |
PageCount | 8 |
ParticipantIDs | ieee_primary_5539834 |
PublicationCentury | 2000 |
PublicationDate | 2010-June |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
PublicationDecade | 2010 |
PublicationTitle | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0023720 ssj0000451957 ssj0003211698 |
Score | 2.038475 |
Snippet | We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1673 |
SubjectTerms | Computer vision Data mining Embedded computing Image converters Image segmentation Isosurfaces Reconstruction algorithms Shape Surface reconstruction Visualization |
Title | Many-to-one contour matching for describing and discriminating object shape |
URI | https://ieeexplore.ieee.org/document/5539834 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB7anjxVbcWdOXg07WS2ZM7FUpRKESu9ldmCIqTFphd_vW-yieLBW97jQSaTWb63I3STZCajmWLwB4SJuNcK9hy1kTQp0cpawVywQ84f5WzJ71di1UG3bS6M974MPvOj8Fj68t3G7oOpbCwEUynjXdQFxa3K1WrtKVWdlKSlGWg2UrUeBRq6sZSeT8kiqWLVJHmBDE-b2k813bg_Y6LGk5fFUxUBVr_9RxuW8haa9tG8GX8VfPI-2hdmZD9_lXb87wceouF3vh9etDfZEer4_Bj1a4CK6-2_A1bTA6LhDdDDHE6TqNhEm9zjEPcOaxMDCi5DNDEgYux8OJlMIHXucEgDrlqJhYBrvDHBEIR3r3rrh2g5vXuezKK6QUP0BqijiKSgHlRcRZzRiUkz74hVKsuIt9LwRNHMSM1FElNNtVeWWBYbDSJOac4AKJygXg7DO0WYEmUooEXtBOPGpinLYqOotQmxHITP0CBM13pb1eBY1zN1_jf7Ah1UXv5gLblEveJj768APBTmulw1X6uUu2s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbeJHEs8VVaFNVaEWdatsxxEIKalouvDrOeeFQAxsOeukxI_cfb4nQndBohKSCAo7wJXDjBTwzxHt-Cp0pdCa09jaIaOZP16ypxVftdB9kwtjjCmCz0zfPha-_DjTO2sqG3BORUjZHtoHvc-9MlursaiUlVKChqZwt_FF41Mgth9L4fv0qeMLT9RpXsDDwrr6U0XXDlDPFYPhy_y5jAGr3v-jEUuhh0YdFNUzKMNP3vu7XPX156_ijv-d4hHqfWf84Xmjy45Ry6QnqFNBVFwJgC0M1V0g6rEumkQgT5w8c7LUYBv5DqcTAw4ugjQxYGIcGyublCVlGmObCFw2E7Mh1zhT1hSEt69yY3poOXpYDMdO1aLBeQPckTs-JwYuucKNlQxUmJjY1UIkiWu0r1ggSKJ8yXjgEUmkEdrV1FMSWGIhGQWocIraKXzeGcLEFYoAXpQxp0zpMKSJpwTROnA1A-Zz1LXLtd6UVTjW1Upd_D18iw7Gi2i6nj7OJpfosPT5W9vJFWrnHztzDVAiVzfFCfoCqTy-tA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Many-to-one+contour+matching+for+describing+and+discriminating+object+shape&rft.au=Srinivasan%2C+Praveen&rft.au=Qihui+Zhu&rft.au=Jianbo+Shi&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1673&rft.epage=1680&rft_id=info:doi/10.1109%2FCVPR.2010.5539834&rft.externalDocID=5539834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |