Many-to-one contour matching for describing and discriminating object shape

We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that we use long, salient, bottom-up image contours to learn object shape, and to achieve object detection with the learned shape. Most learning m...

Full description

Saved in:
Bibliographic Details
Published in2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 1673 - 1680
Main Authors Srinivasan, Praveen, Qihui Zhu, Jianbo Shi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that we use long, salient, bottom-up image contours to learn object shape, and to achieve object detection with the learned shape. Most learning methods rely on one-to-one matching of contours to a model. However, bottom-up image contours often fragment unpredictably. We resolve this difficulty by using many-to-one matching of image contours to a model. To learn a descriptive object shape model, we combine bottom-up contours from a few representative images. The goal is to allow most of the contours in the training images to be many-to-one matched to the model. For detection, our challenges are inferring the object contours and part locations, in addition to object location. Because the locations of object parts and matches of contours are not annotated, they appear as latent variables during training. We use the latent SVM learning formulation to discriminatively tune the many-to-one matching score using the max-margin criterion. We evaluate on the challenging ETHZ shape categories dataset and outperform all existing methods.
AbstractList We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that we use long, salient, bottom-up image contours to learn object shape, and to achieve object detection with the learned shape. Most learning methods rely on one-to-one matching of contours to a model. However, bottom-up image contours often fragment unpredictably. We resolve this difficulty by using many-to-one matching of image contours to a model. To learn a descriptive object shape model, we combine bottom-up contours from a few representative images. The goal is to allow most of the contours in the training images to be many-to-one matched to the model. For detection, our challenges are inferring the object contours and part locations, in addition to object location. Because the locations of object parts and matches of contours are not annotated, they appear as latent variables during training. We use the latent SVM learning formulation to discriminatively tune the many-to-one matching score using the max-margin criterion. We evaluate on the challenging ETHZ shape categories dataset and outperform all existing methods.
Author Srinivasan, Praveen
Qihui Zhu
Jianbo Shi
Author_xml – sequence: 1
  givenname: Praveen
  surname: Srinivasan
  fullname: Srinivasan, Praveen
  email: psrin@seas.upenn.edu
  organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  surname: Qihui Zhu
  fullname: Qihui Zhu
  email: qihuizhu@seas.upenn.edu
  organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  surname: Jianbo Shi
  fullname: Jianbo Shi
  email: jshi@cis.upenn.edu
  organization: GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA
BookMark eNpNkFtLw0AQhVetYFP9AeLL_oHUvSf7KMEbVhRR8a3M3uwWu1uS-NB_b4IFfRq-OcOcwynQJOXkETqnZE4p0ZfN-_PLnJEBpeS65uIAFVQwIdQAH4doSonipdJUH_0Jop78E05Q0XVrQhivGJmih0dIu7LP5WCEbU59_m7xBnq7iukTh9xi5zvbRjMiJIddHHETE_TjKpu1tz3uVrD1p-g4wFfnz_Zzht5url-bu3LxdHvfXC3KSCvZl0oyz3mtiTNQmTp4R6zWIRBvlRGVZsEoELKiDBh4bYnl1MBw4jQIXks-Qxe_f6P3frkd0kC7W-4b4T84s1PB
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2010.5539834
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 142446983X
9781424469833
9781424469857
1424469856
EISSN 1063-6919
EndPage 1680
ExternalDocumentID 5539834
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-652e33890dba7b8fed0c99ff0ec6b4792fb6a45712a2ae9c0c31bac99d9a43853
IEDL.DBID RIE
ISBN 1424469848
9781424469840
ISSN 1063-6919
IngestDate Wed Aug 27 02:49:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-652e33890dba7b8fed0c99ff0ec6b4792fb6a45712a2ae9c0c31bac99d9a43853
PageCount 8
ParticipantIDs ieee_primary_5539834
PublicationCentury 2000
PublicationDate 2010-June
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 06
  year: 2010
  text: 2010-June
PublicationDecade 2010
PublicationTitle 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0023720
ssj0000451957
ssj0003211698
Score 2.038475
Snippet We present an object recognition system that locates an object, identifies its parts, and segments out its contours. A key distinction of our approach is that...
SourceID ieee
SourceType Publisher
StartPage 1673
SubjectTerms Computer vision
Data mining
Embedded computing
Image converters
Image segmentation
Isosurfaces
Reconstruction algorithms
Shape
Surface reconstruction
Visualization
Title Many-to-one contour matching for describing and discriminating object shape
URI https://ieeexplore.ieee.org/document/5539834
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFB7anjxVbcWdOXg07WS2ZM7FUpRKESu9ldmCIqTFphd_vW-yieLBW97jQSaTWb63I3STZCajmWLwB4SJuNcK9hy1kTQp0cpawVywQ84f5WzJ71di1UG3bS6M974MPvOj8Fj68t3G7oOpbCwEUynjXdQFxa3K1WrtKVWdlKSlGWg2UrUeBRq6sZSeT8kiqWLVJHmBDE-b2k813bg_Y6LGk5fFUxUBVr_9RxuW8haa9tG8GX8VfPI-2hdmZD9_lXb87wceouF3vh9etDfZEer4_Bj1a4CK6-2_A1bTA6LhDdDDHE6TqNhEm9zjEPcOaxMDCi5DNDEgYux8OJlMIHXucEgDrlqJhYBrvDHBEIR3r3rrh2g5vXuezKK6QUP0BqijiKSgHlRcRZzRiUkz74hVKsuIt9LwRNHMSM1FElNNtVeWWBYbDSJOac4AKJygXg7DO0WYEmUooEXtBOPGpinLYqOotQmxHITP0CBM13pb1eBY1zN1_jf7Ah1UXv5gLblEveJj768APBTmulw1X6uUu2s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbeJHEs8VVaFNVaEWdatsxxEIKalouvDrOeeFQAxsOeukxI_cfb4nQndBohKSCAo7wJXDjBTwzxHt-Cp0pdCa09jaIaOZP16ypxVftdB9kwtjjCmCz0zfPha-_DjTO2sqG3BORUjZHtoHvc-9MlursaiUlVKChqZwt_FF41Mgth9L4fv0qeMLT9RpXsDDwrr6U0XXDlDPFYPhy_y5jAGr3v-jEUuhh0YdFNUzKMNP3vu7XPX156_ijv-d4hHqfWf84Xmjy45Ry6QnqFNBVFwJgC0M1V0g6rEumkQgT5w8c7LUYBv5DqcTAw4ugjQxYGIcGyublCVlGmObCFw2E7Mh1zhT1hSEt69yY3poOXpYDMdO1aLBeQPckTs-JwYuucKNlQxUmJjY1UIkiWu0r1ggSKJ8yXjgEUmkEdrV1FMSWGIhGQWocIraKXzeGcLEFYoAXpQxp0zpMKSJpwTROnA1A-Zz1LXLtd6UVTjW1Upd_D18iw7Gi2i6nj7OJpfosPT5W9vJFWrnHztzDVAiVzfFCfoCqTy-tA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Many-to-one+contour+matching+for+describing+and+discriminating+object+shape&rft.au=Srinivasan%2C+Praveen&rft.au=Qihui+Zhu&rft.au=Jianbo+Shi&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424469840&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1673&rft.epage=1680&rft_id=info:doi/10.1109%2FCVPR.2010.5539834&rft.externalDocID=5539834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon