Prediction of financial distress: An application to Chinese listed companies using ensemble classifiers of multiple reductions

Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based on multiple reduction ensembles, which employs neighborhood rough set based attribute reduction to generate a set of reducts, then each redu...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Management Science & Engineering ... annual conference proceedings (Print) pp. 1456 - 1461
Main Author Wu, Bao-xiu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based on multiple reduction ensembles, which employs neighborhood rough set based attribute reduction to generate a set of reducts, then each reduct is used to train a base classifier, and finally their results are combined through simple majority voting. Taking Chinese listed companies' real world data as sample data, adopting 10-fold cross validation technique to assess predictive performance, an experiment study is carried out. By comparing the experiment results with the raw data and the single reduct based classifiers, it is concluded that this model can improve the average prediction accuracy or both accuracy and stability, so it is more suitable for financial distress prediction than the single reduct based classifiers.
AbstractList Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based on multiple reduction ensembles, which employs neighborhood rough set based attribute reduction to generate a set of reducts, then each reduct is used to train a base classifier, and finally their results are combined through simple majority voting. Taking Chinese listed companies' real world data as sample data, adopting 10-fold cross validation technique to assess predictive performance, an experiment study is carried out. By comparing the experiment results with the raw data and the single reduct based classifiers, it is concluded that this model can improve the average prediction accuracy or both accuracy and stability, so it is more suitable for financial distress prediction than the single reduct based classifiers.
Author Wu, Bao-xiu
Author_xml – sequence: 1
  givenname: Bao-xiu
  surname: Wu
  fullname: Wu, Bao-xiu
  organization: School of Economics and Business, Northeastern University at Qinhuangdao, 066004, China
BookMark eNpFkM9KAzEYxCNWsK19Ab3kBVrzbf5s4q0sVQsVBRW8lTT5ViO72WWzPXjx2V1rwdMww48ZmAkZxSYiIZfAFgDMXK-Lh-fVImMgFspwJhg_IRMQuTGS5wJO_418G5FxBlLOQYv8nMxS-mSMccg10zAm308d-uD60ETalLQM0UYXbEV9SH2HKd3QZaS2bavg7IHqG1p8hIgJaTUw6Klr6tbGgInuU4jvFGPCelchdZVNKZQBu_RbXu-rPrRDPkzuD5PpgpyVtko4O-qUvN6uXor7-ebxbl0sN_MAueznSlhwSuV-l3nO5ZApw0prsp1WDIxjymegvdE-506JUiuvhQIjvZa6ZJZPydVfb0DEbduF2nZf2-N3_AfWlWS2
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMSE.2014.6930403
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1479953741
9781479953769
9781479953745
1479953768
EndPage 1461
ExternalDocumentID 6930403
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-64a1c667db2d335175690fa92b86019c06d218d98d73c64f86d846195d858f0a3
IEDL.DBID RIE
ISBN 147995375X
9781479953752
ISSN 2155-1847
IngestDate Wed Aug 27 02:29:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-64a1c667db2d335175690fa92b86019c06d218d98d73c64f86d846195d858f0a3
PageCount 6
ParticipantIDs ieee_primary_6930403
PublicationCentury 2000
PublicationDate 2014-Aug.
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-Aug.
PublicationDecade 2010
PublicationTitle International Conference on Management Science & Engineering ... annual conference proceedings (Print)
PublicationTitleAbbrev ICMSE
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003178081
Score 1.5480796
Snippet Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based...
SourceID ieee
SourceType Publisher
StartPage 1456
SubjectTerms Accuracy
Classification algorithms
Companies
ensemble classifiers
financial distress prediction
Logistics
multiple classifier system
neighborhood rough set
Prediction algorithms
Predictive models
Support vector machines
Title Prediction of financial distress: An application to Chinese listed companies using ensemble classifiers of multiple reductions
URI https://ieeexplore.ieee.org/document/6930403
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhaRG7fOCI2zR2HIcbqqgKUlElqNRblXhBFSVBJb1w4NuZyVIK4sAlSixlsy3NPPu9N4RcQlgAmMwlC71YMiH8HotjFbEEooVnTJg4DwXOowc5nIj7aTBtkKu1FsZaW5DPbAdPi718k-kVLpV1sWyfQGvPLQBupVZrvZ4CcRCLSGAtOQiRDIBLWOi40PCMh8G0tneqrv1aQONF3bv-6PEWWV6iU73hR6mVItIMdsmo_saSYPLSWeVJR3_8sm_870_skfa3po-O19FqnzRsekB2NuwIW-RzvMRtGxwqmjnqajMOaualpOSa3qR0Y8ub5hnFAtz23dIFzhdDC057CvCbIqP-mQJKtq_JwlKNafrcYeVtfHhNZKRL9I4tJn-bTAa3T_0hq-ozsDkkHTmTIu5pKUOT-IbzANoAars48hMFMC_SnjSQQJhImZBrKZySBrKdXhQYFSjnxfyQNNMstUeESm69OBJaWRgiDTc7PzR4iDUXKgqOSQt7cvZWWnDMqk48-bv5lGzjaJY8vTPSzJcrew65Q55cFJPmC3X6vqc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-IHtSLDzC-7cGjG2Prus2bIRBQRkiEhBvp2s4QcTM4Lh782_2-PRCNBy_L1mSvtsn3fe3vQcgNhAUokx1ueJbgBmN2yxDCD4wIooWllBfFFhKcwyHvTdjD1J3WyO2aC6O1zsFn2sTTfC9fpXKFS2VNtO1jKO25DXHfbRVsrfWKCkRCtJFANzkIkgaULl7O5ELJM8dzp5XAU3ltVxQaK2j22-FTB3FezCzf8cNsJY813X0SVl9ZQExezFUWmfLjl4Djf3_jgDS-WX10tI5Xh6SmkyOytyFIWCefoyVu3OBg0TSmcSXHQdW8IJXc0fuEbmx60yylaMGt3zVd4IxRNEe1J1CAU8TUP1Ook_VrtNBUYqI-j9F7Gx9eQRnpEtVj8-nfIJNuZ9zuGaVDgzGHtCMzOBMtybmnIls5jgttUGzHIrAjHwq9QFpcQQqhAl95juQs9rmCfKcVuMp3_dgSzjHZStJEnxDKHW2JgElfwxBJuDm2PYUHIR3mB-4pqWNPzt4KEY5Z2Ylnfzdfk53eOBzMBv3h4znZxZEtUHsXZCtbrvQlZBJZdJVPoC-X_cHw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Management+Science+%26+Engineering+...+annual+conference+proceedings+%28Print%29&rft.atitle=Prediction+of+financial+distress%3A+An+application+to+Chinese+listed+companies+using+ensemble+classifiers+of+multiple+reductions&rft.au=Wu%2C+Bao-xiu&rft.date=2014-08-01&rft.pub=IEEE&rft.isbn=147995375X&rft.issn=2155-1847&rft.spage=1456&rft.epage=1461&rft_id=info:doi/10.1109%2FICMSE.2014.6930403&rft.externalDocID=6930403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-1847&client=summon