Prediction of financial distress: An application to Chinese listed companies using ensemble classifiers of multiple reductions
Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based on multiple reduction ensembles, which employs neighborhood rough set based attribute reduction to generate a set of reducts, then each redu...
Saved in:
Published in | International Conference on Management Science & Engineering ... annual conference proceedings (Print) pp. 1456 - 1461 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based on multiple reduction ensembles, which employs neighborhood rough set based attribute reduction to generate a set of reducts, then each reduct is used to train a base classifier, and finally their results are combined through simple majority voting. Taking Chinese listed companies' real world data as sample data, adopting 10-fold cross validation technique to assess predictive performance, an experiment study is carried out. By comparing the experiment results with the raw data and the single reduct based classifiers, it is concluded that this model can improve the average prediction accuracy or both accuracy and stability, so it is more suitable for financial distress prediction than the single reduct based classifiers. |
---|---|
AbstractList | Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based on multiple reduction ensembles, which employs neighborhood rough set based attribute reduction to generate a set of reducts, then each reduct is used to train a base classifier, and finally their results are combined through simple majority voting. Taking Chinese listed companies' real world data as sample data, adopting 10-fold cross validation technique to assess predictive performance, an experiment study is carried out. By comparing the experiment results with the raw data and the single reduct based classifiers, it is concluded that this model can improve the average prediction accuracy or both accuracy and stability, so it is more suitable for financial distress prediction than the single reduct based classifiers. |
Author | Wu, Bao-xiu |
Author_xml | – sequence: 1 givenname: Bao-xiu surname: Wu fullname: Wu, Bao-xiu organization: School of Economics and Business, Northeastern University at Qinhuangdao, 066004, China |
BookMark | eNpFkM9KAzEYxCNWsK19Ab3kBVrzbf5s4q0sVQsVBRW8lTT5ViO72WWzPXjx2V1rwdMww48ZmAkZxSYiIZfAFgDMXK-Lh-fVImMgFspwJhg_IRMQuTGS5wJO_418G5FxBlLOQYv8nMxS-mSMccg10zAm308d-uD60ETalLQM0UYXbEV9SH2HKd3QZaS2bavg7IHqG1p8hIgJaTUw6Klr6tbGgInuU4jvFGPCelchdZVNKZQBu_RbXu-rPrRDPkzuD5PpgpyVtko4O-qUvN6uXor7-ebxbl0sN_MAueznSlhwSuV-l3nO5ZApw0prsp1WDIxjymegvdE-506JUiuvhQIjvZa6ZJZPydVfb0DEbduF2nZf2-N3_AfWlWS2 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMSE.2014.6930403 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 1479953741 9781479953769 9781479953745 1479953768 |
EndPage | 1461 |
ExternalDocumentID | 6930403 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-64a1c667db2d335175690fa92b86019c06d218d98d73c64f86d846195d858f0a3 |
IEDL.DBID | RIE |
ISBN | 147995375X 9781479953752 |
ISSN | 2155-1847 |
IngestDate | Wed Aug 27 02:29:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-64a1c667db2d335175690fa92b86019c06d218d98d73c64f86d846195d858f0a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6930403 |
PublicationCentury | 2000 |
PublicationDate | 2014-Aug. |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-Aug. |
PublicationDecade | 2010 |
PublicationTitle | International Conference on Management Science & Engineering ... annual conference proceedings (Print) |
PublicationTitleAbbrev | ICMSE |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003178081 |
Score | 1.5480796 |
Snippet | Predicting financial distress has been a subject of keen interest in financial economics. In this paper, we forward a financial distress prediction model based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1456 |
SubjectTerms | Accuracy Classification algorithms Companies ensemble classifiers financial distress prediction Logistics multiple classifier system neighborhood rough set Prediction algorithms Predictive models Support vector machines |
Title | Prediction of financial distress: An application to Chinese listed companies using ensemble classifiers of multiple reductions |
URI | https://ieeexplore.ieee.org/document/6930403 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhaRG7fOCI2zR2HIcbqqgKUlElqNRblXhBFSVBJb1w4NuZyVIK4sAlSixlsy3NPPu9N4RcQlgAmMwlC71YMiH8HotjFbEEooVnTJg4DwXOowc5nIj7aTBtkKu1FsZaW5DPbAdPi718k-kVLpV1sWyfQGvPLQBupVZrvZ4CcRCLSGAtOQiRDIBLWOi40PCMh8G0tneqrv1aQONF3bv-6PEWWV6iU73hR6mVItIMdsmo_saSYPLSWeVJR3_8sm_870_skfa3po-O19FqnzRsekB2NuwIW-RzvMRtGxwqmjnqajMOaualpOSa3qR0Y8ub5hnFAtz23dIFzhdDC057CvCbIqP-mQJKtq_JwlKNafrcYeVtfHhNZKRL9I4tJn-bTAa3T_0hq-ozsDkkHTmTIu5pKUOT-IbzANoAars48hMFMC_SnjSQQJhImZBrKZySBrKdXhQYFSjnxfyQNNMstUeESm69OBJaWRgiDTc7PzR4iDUXKgqOSQt7cvZWWnDMqk48-bv5lGzjaJY8vTPSzJcrew65Q55cFJPmC3X6vqc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGG-IHtSLDzC-7cGjG2Prus2bIRBQRkiEhBvp2s4QcTM4Lh782_2-PRCNBy_L1mSvtsn3fe3vQcgNhAUokx1ueJbgBmN2yxDCD4wIooWllBfFFhKcwyHvTdjD1J3WyO2aC6O1zsFn2sTTfC9fpXKFS2VNtO1jKO25DXHfbRVsrfWKCkRCtJFANzkIkgaULl7O5ELJM8dzp5XAU3ltVxQaK2j22-FTB3FezCzf8cNsJY813X0SVl9ZQExezFUWmfLjl4Djf3_jgDS-WX10tI5Xh6SmkyOytyFIWCefoyVu3OBg0TSmcSXHQdW8IJXc0fuEbmx60yylaMGt3zVd4IxRNEe1J1CAU8TUP1Ook_VrtNBUYqI-j9F7Gx9eQRnpEtVj8-nfIJNuZ9zuGaVDgzGHtCMzOBMtybmnIls5jgttUGzHIrAjHwq9QFpcQQqhAl95juQs9rmCfKcVuMp3_dgSzjHZStJEnxDKHW2JgElfwxBJuDm2PYUHIR3mB-4pqWNPzt4KEY5Z2Ylnfzdfk53eOBzMBv3h4znZxZEtUHsXZCtbrvQlZBJZdJVPoC-X_cHw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Management+Science+%26+Engineering+...+annual+conference+proceedings+%28Print%29&rft.atitle=Prediction+of+financial+distress%3A+An+application+to+Chinese+listed+companies+using+ensemble+classifiers+of+multiple+reductions&rft.au=Wu%2C+Bao-xiu&rft.date=2014-08-01&rft.pub=IEEE&rft.isbn=147995375X&rft.issn=2155-1847&rft.spage=1456&rft.epage=1461&rft_id=info:doi/10.1109%2FICMSE.2014.6930403&rft.externalDocID=6930403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-1847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-1847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-1847&client=summon |