Edge-based blur kernel estimation using patch priors
Blind image deconvolution, i.e., estimating a blur kernel k and a latent image x from an input blurred image y, is a severely ill-posed problem. In this paper we introduce a new patch-based strategy for kernel estimation in blind deconvolution. Our approach estimates a "trusted" subset of...
Saved in:
Published in | 2013 IEEE International Conference on Computational Photography (ICCP) pp. 1 - 8 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Blind image deconvolution, i.e., estimating a blur kernel k and a latent image x from an input blurred image y, is a severely ill-posed problem. In this paper we introduce a new patch-based strategy for kernel estimation in blind deconvolution. Our approach estimates a "trusted" subset of x by imposing a patch prior specifically tailored towards modeling the appearance of image edge and corner primitives. To choose proper patch priors we examine both statistical priors learned from a natural image dataset and a simple patch prior from synthetic structures. Based on the patch priors, we iteratively recover the partial latent image x and the blur kernel k. A comprehensive evaluation shows that our approach achieves state-of-the-art results for uniformly blurred images. |
---|---|
ISBN: | 1467364630 9781467364638 |
DOI: | 10.1109/ICCPhot.2013.6528301 |