Single-trial ERP classification of emotional processing
This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated through arousal and valence with a calibrated picture dataset. A classification framework is designed for single-trial ERP classification. The mo...
Saved in:
Published in | 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) pp. 101 - 104 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1948-3546 |
DOI | 10.1109/NER.2013.6695881 |
Cover
Abstract | This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated through arousal and valence with a calibrated picture dataset. A classification framework is designed for single-trial ERP classification. The most discriminative spatio-temporal features of emotional states were selected and fed to a shrinkage linear discriminant classifier. Various binary classifications were tested according to the emotional valence (positive, negative, neutral) and the arousal level (low, high and no excitation). High classification rate (87%) was obtained for the discrimination between the high-arousal (HA) and low-arousal (LA) negative conditions. Relative good performances were also observed for the (extreme) case "HA negative versus neutral conditions" (66%). Our results suggest that the discrimination of emotional states is better when it is mainly based on an arousal difference between stimuli rather than on a valence difference. |
---|---|
AbstractList | This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated through arousal and valence with a calibrated picture dataset. A classification framework is designed for single-trial ERP classification. The most discriminative spatio-temporal features of emotional states were selected and fed to a shrinkage linear discriminant classifier. Various binary classifications were tested according to the emotional valence (positive, negative, neutral) and the arousal level (low, high and no excitation). High classification rate (87%) was obtained for the discrimination between the high-arousal (HA) and low-arousal (LA) negative conditions. Relative good performances were also observed for the (extreme) case "HA negative versus neutral conditions" (66%). Our results suggest that the discrimination of emotional states is better when it is mainly based on an arousal difference between stimuli rather than on a valence difference. |
Author | Bonnet, S. Mathieu, N. G. Harquel, S. Gentaz, E. Campagne, A. |
Author_xml | – sequence: 1 givenname: N. G. surname: Mathieu fullname: Mathieu, N. G. email: nicolas.mathieu@gmail.com organization: LPNC, UPMF, Grenoble, France – sequence: 2 givenname: S. surname: Bonnet fullname: Bonnet, S. email: stephane.bonnet@cea.fr organization: CEA Leti, Grenoble, France – sequence: 3 givenname: S. surname: Harquel fullname: Harquel, S. email: sylvain.harquel@upmf-grenoble.fr organization: UMS, Grenoble, France – sequence: 4 givenname: E. surname: Gentaz fullname: Gentaz, E. email: egentaz@upmf-grenoble.fr organization: LPNC, UPMF, Grenoble, France – sequence: 5 givenname: A. surname: Campagne fullname: Campagne, A. email: aurelie.campagne@upmf-grenoble.fr organization: LPNC, UPMF, Grenoble, France |
BookMark | eNotj0tLAzEURiNUsK3dC27mD2S8N-8spYwPKCpV1yWJNyUynSkzs_HfW7Gr88GBD86Czbq-I8ZuEGpE8HcvzbYWgLI2xmvn8IItUBkr0RuvZmyOXjkutTJXbDWO3wAgBSj0bs7se-n2LfFpKKGtmu1bldowjiWXFKbSd1WfKzr0f_Pkj0Of6GS7_TW7zKEdaXXmkn0-NB_rJ755fXxe3294QasnbiSooBMYbQGNk0G7GEUkUjmL7G2UlBxoJTJCxi-UFJVwTmWIMVIkuWS3_7-FiHbHoRzC8LM7d8pfbc9IIQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NER.2013.6695881 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISBN | 1467319694 9781467319690 |
EndPage | 104 |
ExternalDocumentID | 6695881 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-6304a5c065701683a58bb2bee4ff2f97b3ec80542f10f1d13eb42884f0bbbebe3 |
IEDL.DBID | RIE |
ISSN | 1948-3546 |
IngestDate | Wed Aug 27 03:53:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-6304a5c065701683a58bb2bee4ff2f97b3ec80542f10f1d13eb42884f0bbbebe3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6695881 |
PublicationCentury | 2000 |
PublicationDate | 2013-Nov. |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) |
PublicationTitleAbbrev | NER |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204198 ssj0001766588 |
Score | 1.5474597 |
Snippet | This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 101 |
SubjectTerms | Brain-computer interfaces Classification algorithms Electrodes Electroencephalography Emotion recognition Sensors Spatial filters |
Title | Single-trial ERP classification of emotional processing |
URI | https://ieeexplore.ieee.org/document/6695881 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09-bOI3OYgn26X5anoU2RjCxpgOdhtN-gKidmN0B_3rTdLZoXjwUtqkDSGv8Hvv5ffLQ-jGaIey1CeqREoiLpMkyjn1FyBp7jwSXnhx8mgshzP-OBfzFrprtDAAEMhnEPvbsJdfLM3Gp8p6UmZCeZ31nvvNaq3WLp-SSgemqnlmlPAklMJ1YbqKmODNLiXJeuP-1NO6WLwd8kdtlQAtgwM0-p5UzSh5jTeVjs3nr_Ma_zvrQ9TdifjwpIGnI9SC8hh17ksXZb9_4FscuJ8hqd5B6ZN75Q2iUMMD96cTbLxX7WlEwXJ4aTHUBX9c_6oWF7hPumg26D8_DKNtSYXoxfkJVSQZ4bkwxBNeEqlYLpTWVANwa6nNUs3AKOfFUZsQmxQJA-3iE8Ut0Vo7e7MT1C6XJZwiLFxsWMhMQWFyrrXIc5tZaijNLGhr1Bnq-LVYrOpTMxbbZTj_u_kC7Xt71Cq_S9Su1hu4cnBf6etg5y9_NacU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsDEo0W88YCYSJv4FWdEqFWBtqpKK3WrYudaQkBaoXSAr8d2SioQA0uUtyzf4dx7fY4PQldaWZQlrlHF4zBgIoqClBF3gDBObUbCMidOHgxFb8oeZnxWQzeVFgYAPPkMWu7Ur-VnC71yrbK2EAmXTme9ZXGf8VKttemoxMLCqayuKQlZ5M1wbaEuA8pZtU4ZJu1hZ-yIXbS1_ukPdxUPLt1dNPgeVskpeWmtCtXSn792bPzvuPdQcyPjw6MKoPZRDfID1LjNbZ399oGvsWd_-rZ6A8VP9pVXCLyLB-6MR1i7vNoRiXzs8MJgKC1_7PNlKS-wnzTRtNuZ3PWCtalC8GwzhSIQNGQp16GjvERC0pRLpYgCYMYQk8SKgpY2jyMmCk2URRSUrVAkM6FSykacHqJ6vsjhCGFuq8NMJBIynTKleJqaxBBNSGJAGS2PUcPNxXxZ7psxX0_Dyd-3L9F2bzLoz_v3w8dTtONiU2r-zlC9eF_BuQX_Ql34mH8Bcc-qYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+6th+International+IEEE%2FEMBS+Conference+on+Neural+Engineering+%28NER%29&rft.atitle=Single-trial+ERP+classification+of+emotional+processing&rft.au=Mathieu%2C+N.+G.&rft.au=Bonnet%2C+S.&rft.au=Harquel%2C+S.&rft.au=Gentaz%2C+E.&rft.date=2013-11-01&rft.pub=IEEE&rft.issn=1948-3546&rft.spage=101&rft.epage=104&rft_id=info:doi/10.1109%2FNER.2013.6695881&rft.externalDocID=6695881 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3546&client=summon |