Single-trial ERP classification of emotional processing

This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated through arousal and valence with a calibrated picture dataset. A classification framework is designed for single-trial ERP classification. The mo...

Full description

Saved in:
Bibliographic Details
Published in2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) pp. 101 - 104
Main Authors Mathieu, N. G., Bonnet, S., Harquel, S., Gentaz, E., Campagne, A.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2013
Subjects
Online AccessGet full text
ISSN1948-3546
DOI10.1109/NER.2013.6695881

Cover

Abstract This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated through arousal and valence with a calibrated picture dataset. A classification framework is designed for single-trial ERP classification. The most discriminative spatio-temporal features of emotional states were selected and fed to a shrinkage linear discriminant classifier. Various binary classifications were tested according to the emotional valence (positive, negative, neutral) and the arousal level (low, high and no excitation). High classification rate (87%) was obtained for the discrimination between the high-arousal (HA) and low-arousal (LA) negative conditions. Relative good performances were also observed for the (extreme) case "HA negative versus neutral conditions" (66%). Our results suggest that the discrimination of emotional states is better when it is mainly based on an arousal difference between stimuli rather than on a valence difference.
AbstractList This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated through arousal and valence with a calibrated picture dataset. A classification framework is designed for single-trial ERP classification. The most discriminative spatio-temporal features of emotional states were selected and fed to a shrinkage linear discriminant classifier. Various binary classifications were tested according to the emotional valence (positive, negative, neutral) and the arousal level (low, high and no excitation). High classification rate (87%) was obtained for the discrimination between the high-arousal (HA) and low-arousal (LA) negative conditions. Relative good performances were also observed for the (extreme) case "HA negative versus neutral conditions" (66%). Our results suggest that the discrimination of emotional states is better when it is mainly based on an arousal difference between stimuli rather than on a valence difference.
Author Bonnet, S.
Mathieu, N. G.
Harquel, S.
Gentaz, E.
Campagne, A.
Author_xml – sequence: 1
  givenname: N. G.
  surname: Mathieu
  fullname: Mathieu, N. G.
  email: nicolas.mathieu@gmail.com
  organization: LPNC, UPMF, Grenoble, France
– sequence: 2
  givenname: S.
  surname: Bonnet
  fullname: Bonnet, S.
  email: stephane.bonnet@cea.fr
  organization: CEA Leti, Grenoble, France
– sequence: 3
  givenname: S.
  surname: Harquel
  fullname: Harquel, S.
  email: sylvain.harquel@upmf-grenoble.fr
  organization: UMS, Grenoble, France
– sequence: 4
  givenname: E.
  surname: Gentaz
  fullname: Gentaz, E.
  email: egentaz@upmf-grenoble.fr
  organization: LPNC, UPMF, Grenoble, France
– sequence: 5
  givenname: A.
  surname: Campagne
  fullname: Campagne, A.
  email: aurelie.campagne@upmf-grenoble.fr
  organization: LPNC, UPMF, Grenoble, France
BookMark eNotj0tLAzEURiNUsK3dC27mD2S8N-8spYwPKCpV1yWJNyUynSkzs_HfW7Gr88GBD86Czbq-I8ZuEGpE8HcvzbYWgLI2xmvn8IItUBkr0RuvZmyOXjkutTJXbDWO3wAgBSj0bs7se-n2LfFpKKGtmu1bldowjiWXFKbSd1WfKzr0f_Pkj0Of6GS7_TW7zKEdaXXmkn0-NB_rJ755fXxe3294QasnbiSooBMYbQGNk0G7GEUkUjmL7G2UlBxoJTJCxi-UFJVwTmWIMVIkuWS3_7-FiHbHoRzC8LM7d8pfbc9IIQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NER.2013.6695881
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISBN 1467319694
9781467319690
EndPage 104
ExternalDocumentID 6695881
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-6304a5c065701683a58bb2bee4ff2f97b3ec80542f10f1d13eb42884f0bbbebe3
IEDL.DBID RIE
ISSN 1948-3546
IngestDate Wed Aug 27 03:53:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6304a5c065701683a58bb2bee4ff2f97b3ec80542f10f1d13eb42884f0bbbebe3
PageCount 4
ParticipantIDs ieee_primary_6695881
PublicationCentury 2000
PublicationDate 2013-Nov.
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-Nov.
PublicationDecade 2010
PublicationTitle 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)
PublicationTitleAbbrev NER
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204198
ssj0001766588
Score 1.5474597
Snippet This paper investigates human emotion recognition based on event-related potentials (ERPs) in EEG elicited by picture presentation. Emotion is manipulated...
SourceID ieee
SourceType Publisher
StartPage 101
SubjectTerms Brain-computer interfaces
Classification algorithms
Electrodes
Electroencephalography
Emotion recognition
Sensors
Spatial filters
Title Single-trial ERP classification of emotional processing
URI https://ieeexplore.ieee.org/document/6695881
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09-bOI3OYgn26X5anoU2RjCxpgOdhtN-gKidmN0B_3rTdLZoXjwUtqkDSGv8Hvv5ffLQ-jGaIey1CeqREoiLpMkyjn1FyBp7jwSXnhx8mgshzP-OBfzFrprtDAAEMhnEPvbsJdfLM3Gp8p6UmZCeZ31nvvNaq3WLp-SSgemqnlmlPAklMJ1YbqKmODNLiXJeuP-1NO6WLwd8kdtlQAtgwM0-p5UzSh5jTeVjs3nr_Ma_zvrQ9TdifjwpIGnI9SC8hh17ksXZb9_4FscuJ8hqd5B6ZN75Q2iUMMD96cTbLxX7WlEwXJ4aTHUBX9c_6oWF7hPumg26D8_DKNtSYXoxfkJVSQZ4bkwxBNeEqlYLpTWVANwa6nNUs3AKOfFUZsQmxQJA-3iE8Ut0Vo7e7MT1C6XJZwiLFxsWMhMQWFyrrXIc5tZaijNLGhr1Bnq-LVYrOpTMxbbZTj_u_kC7Xt71Cq_S9Su1hu4cnBf6etg5y9_NacU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWqMsDEo0W88YCYSJv4FWdEqFWBtqpKK3WrYudaQkBaoXSAr8d2SioQA0uUtyzf4dx7fY4PQldaWZQlrlHF4zBgIoqClBF3gDBObUbCMidOHgxFb8oeZnxWQzeVFgYAPPkMWu7Ur-VnC71yrbK2EAmXTme9ZXGf8VKttemoxMLCqayuKQlZ5M1wbaEuA8pZtU4ZJu1hZ-yIXbS1_ukPdxUPLt1dNPgeVskpeWmtCtXSn792bPzvuPdQcyPjw6MKoPZRDfID1LjNbZ399oGvsWd_-rZ6A8VP9pVXCLyLB-6MR1i7vNoRiXzs8MJgKC1_7PNlKS-wnzTRtNuZ3PWCtalC8GwzhSIQNGQp16GjvERC0pRLpYgCYMYQk8SKgpY2jyMmCk2URRSUrVAkM6FSykacHqJ6vsjhCGFuq8NMJBIynTKleJqaxBBNSGJAGS2PUcPNxXxZ7psxX0_Dyd-3L9F2bzLoz_v3w8dTtONiU2r-zlC9eF_BuQX_Ql34mH8Bcc-qYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+6th+International+IEEE%2FEMBS+Conference+on+Neural+Engineering+%28NER%29&rft.atitle=Single-trial+ERP+classification+of+emotional+processing&rft.au=Mathieu%2C+N.+G.&rft.au=Bonnet%2C+S.&rft.au=Harquel%2C+S.&rft.au=Gentaz%2C+E.&rft.date=2013-11-01&rft.pub=IEEE&rft.issn=1948-3546&rft.spage=101&rft.epage=104&rft_id=info:doi/10.1109%2FNER.2013.6695881&rft.externalDocID=6695881
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-3546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-3546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-3546&client=summon