Prediction of chaotic time series using L-GEM based RBFNN

The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in nonlinear dynamical system identification because of its simple topological structure, fast learning and strong extrapolating capability. Th...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 2; pp. 1172 - 1177
Main Authors Hai-Lan Ding, Yeung, D.S., Qian-Li Ma, Ng, W.W.Y., Dong-Liang Wu, Jin-Cheng Li
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in nonlinear dynamical system identification because of its simple topological structure, fast learning and strong extrapolating capability. The major problem in applying RBFNN is the selection of the number of hidden neurons. In this paper, we adopt the Localized Generalization Error Model (L-GEM) to select number of hidden neurons of RBFNN for chaotic time series prediction. The effectiveness of the L-GEM is evaluated by using two benchmarking chaotic time series datasets: Mackey-Glass series and Lorenz series. Simulations results show that the proposed method provides a better prediction performance in comparison with the RBFNN trained with a cross validation method.
AbstractList The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in nonlinear dynamical system identification because of its simple topological structure, fast learning and strong extrapolating capability. The major problem in applying RBFNN is the selection of the number of hidden neurons. In this paper, we adopt the Localized Generalization Error Model (L-GEM) to select number of hidden neurons of RBFNN for chaotic time series prediction. The effectiveness of the L-GEM is evaluated by using two benchmarking chaotic time series datasets: Mackey-Glass series and Lorenz series. Simulations results show that the proposed method provides a better prediction performance in comparison with the RBFNN trained with a cross validation method.
Author Qian-Li Ma
Jin-Cheng Li
Hai-Lan Ding
Dong-Liang Wu
Ng, W.W.Y.
Yeung, D.S.
Author_xml – sequence: 1
  surname: Hai-Lan Ding
  fullname: Hai-Lan Ding
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 2
  givenname: D.S.
  surname: Yeung
  fullname: Yeung, D.S.
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 3
  surname: Qian-Li Ma
  fullname: Qian-Li Ma
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 4
  givenname: W.W.Y.
  surname: Ng
  fullname: Ng, W.W.Y.
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 5
  surname: Dong-Liang Wu
  fullname: Dong-Liang Wu
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 6
  surname: Jin-Cheng Li
  fullname: Jin-Cheng Li
  organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China
BookMark eNo1kMFOwzAQRI1oJdqSH4CLfyDB9tpO9ghRWyqlBSGQuFV2ugEjmqA4HPh7IlHmMprDG41mziZt1xJjV1JkUgq82ZTbqsyUEJgZJRUU8ozNpVZaQy5AnbME8-I_K5iwmZJWpBLgdcrmI1eglGjUBUti_BCjtFG5hRnDx54OoR5C1_Ku4fW764ZQ8yEciUfqA0X-HUP7xqt0vdxy7yId-NPdare7ZNPGfUZKTr5gL6vlc3mfVg_rTXlbpUHmZkitsobASaQcjHO1cxbQaQ-NcEANoRcWwBswWqPFcVWOjfeFAFcUgB4W7PqvNxDR_qsPR9f_7E83wC8f6Eu4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212381
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 1177
ExternalDocumentID 5212381
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-6265e3a19e735aacaa639a4b3f0a3efe9b0633b5354496927679fbb803a8839b3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:14 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6265e3a19e735aacaa639a4b3f0a3efe9b0633b5354496927679fbb803a8839b3
PageCount 6
ParticipantIDs ieee_primary_5212381
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4238707
Snippet The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in...
SourceID ieee
SourceType Publisher
StartPage 1172
SubjectTerms Autoregressive processes
Chaos
Chaotic communication
Chaotic time series prediction
Cybernetics
Localized Generalization Error Model
Machine learning
Neural networks
Neurons
Nonlinear dynamical systems
Prediction methods
Predictive models
RBFNN
Title Prediction of chaotic time series using L-GEM based RBFNN
URI https://ieeexplore.ieee.org/document/5212381
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP5ODx4tbGvL1qsERAOEGEm4kXZ7VWPCDI6Lf72v3YbReDC7rDtsbfe297Xvfd8j5NpKEIj68e8HMmaCpxlTSQLMijCKNB7K-izfWX-8EA9LuWyQmx0XBgB88hl03amP5Wd5unVbZT3PM3U86z1cuJVcrd1-ipMGjyspKd-OsQu-YF4U9gOGS7FlzeviMTqmWu6pavOaUBOo3v1gOhmUUpbVE3-UXvGeZ9Qi07rPZcLJW3dbmG76-UvO8b-DOiCdb44fne-81yFpwPqItOoiD7T65ttEzTculuPeH80tTV90jrZGXU166swXPqjLnX-mE3Y3nFLnFTP6eDuazTpkMRo-DcasqrfAXhFEFAzXNhK4DhXEXGqdao3wRQvDbaA5WFAG8Qw3kkshVF_hdMfKGpMEXCeIsww_Js11voYTQtNMhVrFkZMjE9pGRgtEJiYSeK8slcEpabuZWL2XkhqrahLO_r58TvbLII7Lkr0gzWKzhUvEAoW58kbwBQYAqHg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG4WPehp6mb8bQ8e7Qa0HevVZXNTIIvZkt2WFlo1JsNMdvGv97XAjMaD4UI5QPt48L627_seQjeGawaoH_5-moeE0TQjot_XxDA_CCQcwrgs36Q3nrOHBV800O2WC6O1dslnumNP3V5-lqcbu1TWdTxTy7PehbjP_ZKttV1RseLgYSUm5dohdMKVzAv8nkdgMraomV00hNBUCz5VbVpTajzRnQziaFCKWVbP_FF8xcWeURPFda_LlJO3zqZQnfTzl6Djf4d1gNrfLD883cavQ9TQqyPUrMs84OqrbyExXdvdHPsGcW5w-iJz8DZsq9Jj68D6A9vs-WcckfthjG1czPDT3ShJ2mg-Gs4GY1JVXCCvACMKArMbrqn0hQ4plzKVEgCMZIoaT1JttFCAaKjilDMmegLMHQqjVN-jsg9IS9FjtLPKV_oE4TQTvhRhYAXJmDSBkgywiQoY3CtLuXeKWtYSy_dSVGNZGeHs78vXaG88i6NlNEkez9F-uaVjc2Yv0E6x3uhLQAaFunIO8QUMfKvB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Prediction+of+chaotic+time+series+using+L-GEM+based+RBFNN&rft.au=Hai-Lan+Ding&rft.au=Yeung%2C+D.S.&rft.au=Qian-Li+Ma&rft.au=Ng%2C+W.W.Y.&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=2&rft.spage=1172&rft.epage=1177&rft_id=info:doi/10.1109%2FICMLC.2009.5212381&rft.externalDocID=5212381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon