Prediction of chaotic time series using L-GEM based RBFNN
The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in nonlinear dynamical system identification because of its simple topological structure, fast learning and strong extrapolating capability. Th...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 2; pp. 1172 - 1177 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in nonlinear dynamical system identification because of its simple topological structure, fast learning and strong extrapolating capability. The major problem in applying RBFNN is the selection of the number of hidden neurons. In this paper, we adopt the Localized Generalization Error Model (L-GEM) to select number of hidden neurons of RBFNN for chaotic time series prediction. The effectiveness of the L-GEM is evaluated by using two benchmarking chaotic time series datasets: Mackey-Glass series and Lorenz series. Simulations results show that the proposed method provides a better prediction performance in comparison with the RBFNN trained with a cross validation method. |
---|---|
AbstractList | The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in nonlinear dynamical system identification because of its simple topological structure, fast learning and strong extrapolating capability. The major problem in applying RBFNN is the selection of the number of hidden neurons. In this paper, we adopt the Localized Generalization Error Model (L-GEM) to select number of hidden neurons of RBFNN for chaotic time series prediction. The effectiveness of the L-GEM is evaluated by using two benchmarking chaotic time series datasets: Mackey-Glass series and Lorenz series. Simulations results show that the proposed method provides a better prediction performance in comparison with the RBFNN trained with a cross validation method. |
Author | Qian-Li Ma Jin-Cheng Li Hai-Lan Ding Dong-Liang Wu Ng, W.W.Y. Yeung, D.S. |
Author_xml | – sequence: 1 surname: Hai-Lan Ding fullname: Hai-Lan Ding organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 2 givenname: D.S. surname: Yeung fullname: Yeung, D.S. organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 3 surname: Qian-Li Ma fullname: Qian-Li Ma organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 4 givenname: W.W.Y. surname: Ng fullname: Ng, W.W.Y. organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 5 surname: Dong-Liang Wu fullname: Dong-Liang Wu organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 6 surname: Jin-Cheng Li fullname: Jin-Cheng Li organization: Sch. of Comput. Sci. & Eng., South China Univ. of Technol., Guangzhou, China |
BookMark | eNo1kMFOwzAQRI1oJdqSH4CLfyDB9tpO9ghRWyqlBSGQuFV2ugEjmqA4HPh7IlHmMprDG41mziZt1xJjV1JkUgq82ZTbqsyUEJgZJRUU8ozNpVZaQy5AnbME8-I_K5iwmZJWpBLgdcrmI1eglGjUBUti_BCjtFG5hRnDx54OoR5C1_Ku4fW764ZQ8yEciUfqA0X-HUP7xqt0vdxy7yId-NPdare7ZNPGfUZKTr5gL6vlc3mfVg_rTXlbpUHmZkitsobASaQcjHO1cxbQaQ-NcEANoRcWwBswWqPFcVWOjfeFAFcUgB4W7PqvNxDR_qsPR9f_7E83wC8f6Eu4 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212381 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 1177 |
ExternalDocumentID | 5212381 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-6265e3a19e735aacaa639a4b3f0a3efe9b0633b5354496927679fbb803a8839b3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:14 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-6265e3a19e735aacaa639a4b3f0a3efe9b0633b5354496927679fbb803a8839b3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212381 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4238707 |
Snippet | The prediction of chaotic time series is a vital problem in nonlinear dynamical system. Radial Basis Function Neural Network (RBFNN) has been widely adopted in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1172 |
SubjectTerms | Autoregressive processes Chaos Chaotic communication Chaotic time series prediction Cybernetics Localized Generalization Error Model Machine learning Neural networks Neurons Nonlinear dynamical systems Prediction methods Predictive models RBFNN |
Title | Prediction of chaotic time series using L-GEM based RBFNN |
URI | https://ieeexplore.ieee.org/document/5212381 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP5ODx4tbGvL1qsERAOEGEm4kXZ7VWPCDI6Lf72v3YbReDC7rDtsbfe297Xvfd8j5NpKEIj68e8HMmaCpxlTSQLMijCKNB7K-izfWX-8EA9LuWyQmx0XBgB88hl03amP5Wd5unVbZT3PM3U86z1cuJVcrd1-ipMGjyspKd-OsQu-YF4U9gOGS7FlzeviMTqmWu6pavOaUBOo3v1gOhmUUpbVE3-UXvGeZ9Qi07rPZcLJW3dbmG76-UvO8b-DOiCdb44fne-81yFpwPqItOoiD7T65ttEzTculuPeH80tTV90jrZGXU166swXPqjLnX-mE3Y3nFLnFTP6eDuazTpkMRo-DcasqrfAXhFEFAzXNhK4DhXEXGqdao3wRQvDbaA5WFAG8Qw3kkshVF_hdMfKGpMEXCeIsww_Js11voYTQtNMhVrFkZMjE9pGRgtEJiYSeK8slcEpabuZWL2XkhqrahLO_r58TvbLII7Lkr0gzWKzhUvEAoW58kbwBQYAqHg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG4WPehp6mb8bQ8e7Qa0HevVZXNTIIvZkt2WFlo1JsNMdvGv97XAjMaD4UI5QPt48L627_seQjeGawaoH_5-moeE0TQjot_XxDA_CCQcwrgs36Q3nrOHBV800O2WC6O1dslnumNP3V5-lqcbu1TWdTxTy7PehbjP_ZKttV1RseLgYSUm5dohdMKVzAv8nkdgMraomV00hNBUCz5VbVpTajzRnQziaFCKWVbP_FF8xcWeURPFda_LlJO3zqZQnfTzl6Djf4d1gNrfLD883cavQ9TQqyPUrMs84OqrbyExXdvdHPsGcW5w-iJz8DZsq9Jj68D6A9vs-WcckfthjG1czPDT3ShJ2mg-Gs4GY1JVXCCvACMKArMbrqn0hQ4plzKVEgCMZIoaT1JttFCAaKjilDMmegLMHQqjVN-jsg9IS9FjtLPKV_oE4TQTvhRhYAXJmDSBkgywiQoY3CtLuXeKWtYSy_dSVGNZGeHs78vXaG88i6NlNEkez9F-uaVjc2Yv0E6x3uhLQAaFunIO8QUMfKvB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Prediction+of+chaotic+time+series+using+L-GEM+based+RBFNN&rft.au=Hai-Lan+Ding&rft.au=Yeung%2C+D.S.&rft.au=Qian-Li+Ma&rft.au=Ng%2C+W.W.Y.&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=2&rft.spage=1172&rft.epage=1177&rft_id=info:doi/10.1109%2FICMLC.2009.5212381&rft.externalDocID=5212381 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |