ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION

A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is proposed. The proposed adaptive common spatial patterns (ACSP) algorithm was tested on two datasets (an open source data set (4-class MI), and an...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) pp. 420 - 423
Main Authors Costa, Ana P., Moller, Jakob S., Iversen, Helle K., Puthusserypady, Sadasivan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2018
Subjects
Online AccessGet full text
DOI10.1109/GlobalSIP.2018.8646403

Cover

Abstract A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is proposed. The proposed adaptive common spatial patterns (ACSP) algorithm was tested on two datasets (an open source data set (4-class MI), and an in-house data set (3-class MI)). Results show that when long calibration data is available, the ACSP performs only slightly better (4%) than the CSP, but for short calibration sessions, the ACSP significantly improved the performance (up to 4-fold). An investigation into class separability of the in-house data set was performed and was concluded that the "Pinch"movement was more easily discriminated than "Grasp" and "Elbow Flexion". The proposed paradigm proved feasible and provided insights to help choose the motor tasks leading to best results in potential real-life applications. The ACSP enabled a successful semi user independent scenario and showed potential to be a tool towards an improved, personalized stroke rehabilitation protocol.
AbstractList A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is proposed. The proposed adaptive common spatial patterns (ACSP) algorithm was tested on two datasets (an open source data set (4-class MI), and an in-house data set (3-class MI)). Results show that when long calibration data is available, the ACSP performs only slightly better (4%) than the CSP, but for short calibration sessions, the ACSP significantly improved the performance (up to 4-fold). An investigation into class separability of the in-house data set was performed and was concluded that the "Pinch"movement was more easily discriminated than "Grasp" and "Elbow Flexion". The proposed paradigm proved feasible and provided insights to help choose the motor tasks leading to best results in potential real-life applications. The ACSP enabled a successful semi user independent scenario and showed potential to be a tool towards an improved, personalized stroke rehabilitation protocol.
Author Costa, Ana P.
Iversen, Helle K.
Puthusserypady, Sadasivan
Moller, Jakob S.
Author_xml – sequence: 1
  givenname: Ana P.
  surname: Costa
  fullname: Costa, Ana P.
– sequence: 2
  givenname: Jakob S.
  surname: Moller
  fullname: Moller, Jakob S.
– sequence: 3
  givenname: Helle K.
  surname: Iversen
  fullname: Iversen, Helle K.
– sequence: 4
  givenname: Sadasivan
  surname: Puthusserypady
  fullname: Puthusserypady, Sadasivan
BookMark eNotUMtqg0AUnUILbVO_oFDmB7Tz0hmXo07MUB-Dmi66CT5GsNikxG7y9xWSzTlczoPLeQb3x9PRAvCGkYcxCt_T-dS1c62NRxAWnghYwBC9A07IBeZEYExCnz0CZ1m-EUIkEDTg6Al8yUSaRn8qGNcGbssK7mtVQV0kyqgVilitB8y1G8UaGlnJRKf51WjM6sx0HsG6qcoPBSu1k5HOdCMbXRYv4GFs58U6N96A_VY18c7NylTHMnMnzP0_NyAEj9SilrIAd3xoRxoiars-RAMLRS982lO-KuvHtBV86H1CGMF0YJ1dc3QDXq-9k7X28Hueftrz5XBbgP4DRtxLtw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GlobalSIP.2018.8646403
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728112954
1728112958
EndPage 423
ExternalDocumentID 8646403
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-6221f3e0a3461b7daf3903ebc90d498c853c371b78363a87dc5224213d4be3e03
IEDL.DBID RIE
IngestDate Wed Aug 27 03:03:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6221f3e0a3461b7daf3903ebc90d498c853c371b78363a87dc5224213d4be3e03
PageCount 4
ParticipantIDs ieee_primary_8646403
PublicationCentury 2000
PublicationDate 2018-Nov.
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov.
PublicationDecade 2010
PublicationTitle 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
PublicationTitleAbbrev GlobalSIP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683670
Score 1.6848657
Snippet A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is...
SourceID ieee
SourceType Publisher
StartPage 420
SubjectTerms Adaptive Common Spatial Patterns (ACSP)
Adaptive systems
Brain-computer interface (BCI)
Calibration
Covariance matrices
Electroencephalography
Sensorimotor rhythms (SMR)
Stroke (medical condition)
Stroke rehabilitation
Task analysis
Training
Title ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION
URI https://ieeexplore.ieee.org/document/8646403
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwGG_mTnrxsRnf6cGjMKAVypGxzqEyCTCzeFkoLYkx2YxhF_96Px7ORzx4IdD2S8lX4Hvw_X5F6NJyCpcoAmGJQQQEKFJqTAmp0cyRICILlVcJ_XBqT2b0dn4976CrDRZGKVUXnym9Oq3_5ctVvq5SZQNmU5tW1J5b8Jg1WK1NPsWyWcVF1oKATcMdNKT5SRBVBVxMb4V_7KJSG5HxLgo_p29qR170dSn0_P0XM-N_728P9b_gejjaGKJ91FHLA7TzjWmwh568kRelwSPHfhJhiPzwLOExDqYjHnE4TH0OFzgMtKEf4MiLvVFwEzYDowhGwkduiJM0frjjOObwygf3QVrnt_poNuapP9HabRW0Z_AVSs22LLMgysgItU3hyKwgrkGUyF1DUpflYMBz4kAPKJRkzJE5-GjUMomkQoEcOUTd5WqpjhB2ZWYImlsCnELKFMkoI4UtTSFN6TLTPEa9SkuL14Y5Y9Eq6OTv5lO0Xa1Ug_Q7Q93yba3OweSX4qJe6w9WoKQa
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYqGICFo0XceGAkaRK7iTP2SKlpU6I0RRVLFR-REFKLULrw63lJSjnEwGLFjp9kPSt5h9_3GaEbx8t8ogmEJRYREKAoZTAtlEFTT4GIyrQsEvrh2B1M6f2sNauh2w0WRmtdFp9ps3gsz_LVUq6KVFmTudSlBbXnNth92qrQWpuMiuOygo1sDQO2Lb9Z0eZPeFSUcDFzLf7jHpXSjPT3Ufi5gKp65MVc5cKU77-4Gf-7wgPU-ALs4Whjig5RTS-O0N43rsE6emr32lHCHwPcnUQYYj88nQQx5uNeEAXQjLsBdHDIjU6X46gdt3v8LqwmRhHMhN9cB0-S-GEY4DiAj56PeFJmuBpo2g-S7sBYX6xgPIO3kBuu49gZ0VZKqGsLT6UZ8S2ihfQtRX0mwYRL4sEbUChJmackeGnUsYmiQoMcOUZbi-VCnyDsq9QSVDoC3ELKNEkpI5mrbKFs5TPbPkX1Qkvz14o7Y75W0Nnfw9doZ5CEo_mIj4fnaLfYtQr3d4G28reVvgQHIBdX5b5_ACoap2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=ADAPTIVE+CSP+FOR+USER+INDEPENDENCE+IN+MI-BCI+PARADIGM+FOR+UPPER+LIMB+STROKE+REHABILITATION&rft.au=Costa%2C+Ana+P.&rft.au=Moller%2C+Jakob+S.&rft.au=Iversen%2C+Helle+K.&rft.au=Puthusserypady%2C+Sadasivan&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=420&rft.epage=423&rft_id=info:doi/10.1109%2FGlobalSIP.2018.8646403&rft.externalDocID=8646403