ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION
A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is proposed. The proposed adaptive common spatial patterns (ACSP) algorithm was tested on two datasets (an open source data set (4-class MI), and an...
Saved in:
Published in | 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) pp. 420 - 423 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/GlobalSIP.2018.8646403 |
Cover
Abstract | A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is proposed. The proposed adaptive common spatial patterns (ACSP) algorithm was tested on two datasets (an open source data set (4-class MI), and an in-house data set (3-class MI)). Results show that when long calibration data is available, the ACSP performs only slightly better (4%) than the CSP, but for short calibration sessions, the ACSP significantly improved the performance (up to 4-fold). An investigation into class separability of the in-house data set was performed and was concluded that the "Pinch"movement was more easily discriminated than "Grasp" and "Elbow Flexion". The proposed paradigm proved feasible and provided insights to help choose the motor tasks leading to best results in potential real-life applications. The ACSP enabled a successful semi user independent scenario and showed potential to be a tool towards an improved, personalized stroke rehabilitation protocol. |
---|---|
AbstractList | A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is proposed. The proposed adaptive common spatial patterns (ACSP) algorithm was tested on two datasets (an open source data set (4-class MI), and an in-house data set (3-class MI)). Results show that when long calibration data is available, the ACSP performs only slightly better (4%) than the CSP, but for short calibration sessions, the ACSP significantly improved the performance (up to 4-fold). An investigation into class separability of the in-house data set was performed and was concluded that the "Pinch"movement was more easily discriminated than "Grasp" and "Elbow Flexion". The proposed paradigm proved feasible and provided insights to help choose the motor tasks leading to best results in potential real-life applications. The ACSP enabled a successful semi user independent scenario and showed potential to be a tool towards an improved, personalized stroke rehabilitation protocol. |
Author | Costa, Ana P. Iversen, Helle K. Puthusserypady, Sadasivan Moller, Jakob S. |
Author_xml | – sequence: 1 givenname: Ana P. surname: Costa fullname: Costa, Ana P. – sequence: 2 givenname: Jakob S. surname: Moller fullname: Moller, Jakob S. – sequence: 3 givenname: Helle K. surname: Iversen fullname: Iversen, Helle K. – sequence: 4 givenname: Sadasivan surname: Puthusserypady fullname: Puthusserypady, Sadasivan |
BookMark | eNotUMtqg0AUnUILbVO_oFDmB7Tz0hmXo07MUB-Dmi66CT5GsNikxG7y9xWSzTlczoPLeQb3x9PRAvCGkYcxCt_T-dS1c62NRxAWnghYwBC9A07IBeZEYExCnz0CZ1m-EUIkEDTg6Al8yUSaRn8qGNcGbssK7mtVQV0kyqgVilitB8y1G8UaGlnJRKf51WjM6sx0HsG6qcoPBSu1k5HOdCMbXRYv4GFs58U6N96A_VY18c7NylTHMnMnzP0_NyAEj9SilrIAd3xoRxoiars-RAMLRS982lO-KuvHtBV86H1CGMF0YJ1dc3QDXq-9k7X28Hueftrz5XBbgP4DRtxLtw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/GlobalSIP.2018.8646403 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728112954 1728112958 |
EndPage | 423 |
ExternalDocumentID | 8646403 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR AAWTH ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-6221f3e0a3461b7daf3903ebc90d498c853c371b78363a87dc5224213d4be3e03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 03:03:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-6221f3e0a3461b7daf3903ebc90d498c853c371b78363a87dc5224213d4be3e03 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8646403 |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov. |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP) |
PublicationTitleAbbrev | GlobalSIP |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683670 |
Score | 1.6848657 |
Snippet | A 3-class motor imagery (MI) Brain-Computer Interface (BCI) system, that implements subject adaptation with short to non-existing calibration sessions is... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 420 |
SubjectTerms | Adaptive Common Spatial Patterns (ACSP) Adaptive systems Brain-computer interface (BCI) Calibration Covariance matrices Electroencephalography Sensorimotor rhythms (SMR) Stroke (medical condition) Stroke rehabilitation Task analysis Training |
Title | ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION |
URI | https://ieeexplore.ieee.org/document/8646403 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT4MwGG_mTnrxsRnf6cGjMKAVypGxzqEyCTCzeFkoLYkx2YxhF_96Px7ORzx4IdD2S8lX4Hvw_X5F6NJyCpcoAmGJQQQEKFJqTAmp0cyRICILlVcJ_XBqT2b0dn4976CrDRZGKVUXnym9Oq3_5ctVvq5SZQNmU5tW1J5b8Jg1WK1NPsWyWcVF1oKATcMdNKT5SRBVBVxMb4V_7KJSG5HxLgo_p29qR170dSn0_P0XM-N_728P9b_gejjaGKJ91FHLA7TzjWmwh568kRelwSPHfhJhiPzwLOExDqYjHnE4TH0OFzgMtKEf4MiLvVFwEzYDowhGwkduiJM0frjjOObwygf3QVrnt_poNuapP9HabRW0Z_AVSs22LLMgysgItU3hyKwgrkGUyF1DUpflYMBz4kAPKJRkzJE5-GjUMomkQoEcOUTd5WqpjhB2ZWYImlsCnELKFMkoI4UtTSFN6TLTPEa9SkuL14Y5Y9Eq6OTv5lO0Xa1Ug_Q7Q93yba3OweSX4qJe6w9WoKQa |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFLYqGICFo0XceGAkaRK7iTP2SKlpU6I0RRVLFR-REFKLULrw63lJSjnEwGLFjp9kPSt5h9_3GaEbx8t8ogmEJRYREKAoZTAtlEFTT4GIyrQsEvrh2B1M6f2sNauh2w0WRmtdFp9ps3gsz_LVUq6KVFmTudSlBbXnNth92qrQWpuMiuOygo1sDQO2Lb9Z0eZPeFSUcDFzLf7jHpXSjPT3Ufi5gKp65MVc5cKU77-4Gf-7wgPU-ALs4Whjig5RTS-O0N43rsE6emr32lHCHwPcnUQYYj88nQQx5uNeEAXQjLsBdHDIjU6X46gdt3v8LqwmRhHMhN9cB0-S-GEY4DiAj56PeFJmuBpo2g-S7sBYX6xgPIO3kBuu49gZ0VZKqGsLT6UZ8S2ihfQtRX0mwYRL4sEbUChJmackeGnUsYmiQoMcOUZbi-VCnyDsq9QSVDoC3ELKNEkpI5mrbKFs5TPbPkX1Qkvz14o7Y75W0Nnfw9doZ5CEo_mIj4fnaLfYtQr3d4G28reVvgQHIBdX5b5_ACoap2c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Global+Conference+on+Signal+and+Information+Processing+%28GlobalSIP%29&rft.atitle=ADAPTIVE+CSP+FOR+USER+INDEPENDENCE+IN+MI-BCI+PARADIGM+FOR+UPPER+LIMB+STROKE+REHABILITATION&rft.au=Costa%2C+Ana+P.&rft.au=Moller%2C+Jakob+S.&rft.au=Iversen%2C+Helle+K.&rft.au=Puthusserypady%2C+Sadasivan&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=420&rft.epage=423&rft_id=info:doi/10.1109%2FGlobalSIP.2018.8646403&rft.externalDocID=8646403 |