Model Reference Sliding Mode Control for RPMTM with Neural Network Load Torque Observer
Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM) seriously deteriorate the drive performance of system at low speeds. A model reference sliding mode control scheme which features good robustness aga...
Saved in:
Published in | 2012 Asia-Pacific Power and Energy Engineering Conference pp. 1 - 4 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM) seriously deteriorate the drive performance of system at low speeds. A model reference sliding mode control scheme which features good robustness against parameter variations is proposed in this paper firstly. Then a neural network load torque observer is presented to observe and compensate external load disturbances. The analysis, design and simulation of the proposed model reference sliding mode control scheme controller and neural network load torque observer are described. Simulation results show that good control performance, both in the command-tracking and the load-regulating characteristics of the rotor position, is achieved. |
---|---|
AbstractList | Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM) seriously deteriorate the drive performance of system at low speeds. A model reference sliding mode control scheme which features good robustness against parameter variations is proposed in this paper firstly. Then a neural network load torque observer is presented to observe and compensate external load disturbances. The analysis, design and simulation of the proposed model reference sliding mode control scheme controller and neural network load torque observer are described. Simulation results show that good control performance, both in the command-tracking and the load-regulating characteristics of the rotor position, is achieved. |
Author | Chengyuan Wang Ting Dong Jiakuan Xia Bing Peng |
Author_xml | – sequence: 1 surname: Bing Peng fullname: Bing Peng email: pengbingfree@gmail.com organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China – sequence: 2 surname: Chengyuan Wang fullname: Chengyuan Wang organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China – sequence: 3 surname: Jiakuan Xia fullname: Jiakuan Xia organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China – sequence: 4 surname: Ting Dong fullname: Ting Dong organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China |
BookMark | eNpVkMtOg0AYhcdYE2vlCbqZFwDnwtyWDcFLApZUjMtmgB9FkdGB2vj21tiNZ_PlfIuzOBdoNrgBEFpSElFKzNWqKNI0iRihLJKcqNiIExQYpWkslCIiVuz0Xxd6huaMChXGmptzFIzjKzlEM64NnaOn3DXQ4w204GGoAT_0XdMNz_jX48QNk3c9bp3HmyIvc7zvphd8Dztv-wOmvfNvOHO2waXznzvA62oE_wX-Ep21th8hOHKBHq_TMrkNs_XNXbLKwo4qMYWSSm0UCCI5pzGvrRSqknUtja0MhbqxLWHEctMqpWtStaBsTKyoZGUaqy1foOXfbgcA2w_fvVv_vT1ew38AEk1W_Q |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/APPEEC.2012.6307495 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781457705472 1457705478 145770546X 9781457705465 |
EndPage | 4 |
ExternalDocumentID | 6307495 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-616897e50633143ca657b6cc69ab91ecdaf020a39f778c0bfe7a40a5b6b9da8a3 |
IEDL.DBID | RIE |
ISBN | 9781457705458 1457705451 |
ISSN | 2157-4839 |
IngestDate | Wed Jun 26 19:24:20 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-616897e50633143ca657b6cc69ab91ecdaf020a39f778c0bfe7a40a5b6b9da8a3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6307495 |
PublicationCentury | 2000 |
PublicationDate | 2012-March |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-March |
PublicationDecade | 2010 |
PublicationTitle | 2012 Asia-Pacific Power and Energy Engineering Conference |
PublicationTitleAbbrev | APPEEC |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000823891 ssj0003203524 |
Score | 1.5157214 |
Snippet | Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Load modeling Mathematical model Neural networks Observers Sliding mode control Synchronous motors Torque |
Title | Model Reference Sliding Mode Control for RPMTM with Neural Network Load Torque Observer |
URI | https://ieeexplore.ieee.org/document/6307495 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELaAqV36gKpveejYBEJwbI8VAqGqaaMWVDZkO46EikiFwtJf3zsnpA916JTYihLHtnSf7777jpAbxox22e19JTJvAOvgaUemCnjAuOGcuRpL8WM0mQ3u52zeILd1Loy11pHPrI-3Lpaf5maLrrJuBBsSAH2TNLmUZa5W7U_BiJGodF-wHfZR6RODymDUOPrMpMvrYpwDSmHBTu6paotKkSjoye5dkoxGQ6R99f3qkz9qrzjTMz4g8W7QJePkzd8W2jcfv_Qc__tXh6TzleRHk9p8HZGGXR-T_W_6hG3yipXSVrQWo6UvqyU-TLGfDkuWOwXYS5-TeBpTdOpSlPtQK7g4fjl9yFVKp_kG7A990ugDtpsOmY1H0-HEqyoxeEuAFwWcLyMhuWWAZ0IAWEZFjOvImEgqLQNrUpUB7FShzDgXpqczy9Wgp5iOtEyVUOEJaa3ztT0lVDnEJ6MUXgxHcyWFSqViaCeFBXt6Rto4RYv3UmxjUc3O-d_dF2QPl6kkhV2SVrHZ2itACYW-dtvjE44-sfE |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD-rFDzB-24NHGYzRdT0aAkFluChEbqTtuoRImCHj4l_ve92YH_HgaWuzbF3b5P363u_9HiE3jGlls9vbMkgaHViHhrJkKpe7jGvOma2xFI78waTzMGXTCrktc2GMMZZ8Zhy8tbH8ONVrdJU1fdiQAOi3yDZDXJFna5UeFYwZBYXyC7a9Nmp9YlgZzBpHr5mwmV2Mc8ApzN0IPhXtoNAkcluieRdFvV4XiV9tp_joj-or1vj090m4GXbOOXlz1ply9McvRcf__tcBqX-l-dGoNGCHpGKWR2Tvm0JhjbxirbQFLeVo6ctijg9T7KfdnOdOAfjS5ygchxTduhQFP-QCLpZhToepjOk4XYEFok8KvcBmVSeTfm_cHTSKWgyNOQCMDE6YfiC4YYBoPIBYWvqMK19rX0glXKNjmQDwlJ5IOA90SyWGy05LMuUrEctAesekukyX5oRQaTGf8GN4MRzOpQhkLCRDSxkYsKinpIZTNHvP5TZmxeyc_d19TXYG43A4G96PHs_JLi5ZThG7INVstTaXgBkydWW3yicXzrU- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Asia-Pacific+Power+and+Energy+Engineering+Conference&rft.atitle=Model+Reference+Sliding+Mode+Control+for+RPMTM+with+Neural+Network+Load+Torque+Observer&rft.au=Bing+Peng&rft.au=Chengyuan+Wang&rft.au=Jiakuan+Xia&rft.au=Ting+Dong&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781457705458&rft.issn=2157-4839&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FAPPEEC.2012.6307495&rft.externalDocID=6307495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-4839&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-4839&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-4839&client=summon |