Model Reference Sliding Mode Control for RPMTM with Neural Network Load Torque Observer

Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM) seriously deteriorate the drive performance of system at low speeds. A model reference sliding mode control scheme which features good robustness aga...

Full description

Saved in:
Bibliographic Details
Published in2012 Asia-Pacific Power and Energy Engineering Conference pp. 1 - 4
Main Authors Bing Peng, Chengyuan Wang, Jiakuan Xia, Ting Dong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.03.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM) seriously deteriorate the drive performance of system at low speeds. A model reference sliding mode control scheme which features good robustness against parameter variations is proposed in this paper firstly. Then a neural network load torque observer is presented to observe and compensate external load disturbances. The analysis, design and simulation of the proposed model reference sliding mode control scheme controller and neural network load torque observer are described. Simulation results show that good control performance, both in the command-tracking and the load-regulating characteristics of the rotor position, is achieved.
AbstractList Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM) seriously deteriorate the drive performance of system at low speeds. A model reference sliding mode control scheme which features good robustness against parameter variations is proposed in this paper firstly. Then a neural network load torque observer is presented to observe and compensate external load disturbances. The analysis, design and simulation of the proposed model reference sliding mode control scheme controller and neural network load torque observer are described. Simulation results show that good control performance, both in the command-tracking and the load-regulating characteristics of the rotor position, is achieved.
Author Chengyuan Wang
Ting Dong
Jiakuan Xia
Bing Peng
Author_xml – sequence: 1
  surname: Bing Peng
  fullname: Bing Peng
  email: pengbingfree@gmail.com
  organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China
– sequence: 2
  surname: Chengyuan Wang
  fullname: Chengyuan Wang
  organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China
– sequence: 3
  surname: Jiakuan Xia
  fullname: Jiakuan Xia
  organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China
– sequence: 4
  surname: Ting Dong
  fullname: Ting Dong
  organization: Sch. of Electr. Eng., Shenyang Univ. of Technol., Shenyang, China
BookMark eNpVkMtOg0AYhcdYE2vlCbqZFwDnwtyWDcFLApZUjMtmgB9FkdGB2vj21tiNZ_PlfIuzOBdoNrgBEFpSElFKzNWqKNI0iRihLJKcqNiIExQYpWkslCIiVuz0Xxd6huaMChXGmptzFIzjKzlEM64NnaOn3DXQ4w204GGoAT_0XdMNz_jX48QNk3c9bp3HmyIvc7zvphd8Dztv-wOmvfNvOHO2waXznzvA62oE_wX-Ep21th8hOHKBHq_TMrkNs_XNXbLKwo4qMYWSSm0UCCI5pzGvrRSqknUtja0MhbqxLWHEctMqpWtStaBsTKyoZGUaqy1foOXfbgcA2w_fvVv_vT1ew38AEk1W_Q
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APPEEC.2012.6307495
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781457705472
1457705478
145770546X
9781457705465
EndPage 4
ExternalDocumentID 6307495
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-616897e50633143ca657b6cc69ab91ecdaf020a39f778c0bfe7a40a5b6b9da8a3
IEDL.DBID RIE
ISBN 9781457705458
1457705451
ISSN 2157-4839
IngestDate Wed Jun 26 19:24:20 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-616897e50633143ca657b6cc69ab91ecdaf020a39f778c0bfe7a40a5b6b9da8a3
PageCount 4
ParticipantIDs ieee_primary_6307495
PublicationCentury 2000
PublicationDate 2012-March
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: 2012-March
PublicationDecade 2010
PublicationTitle 2012 Asia-Pacific Power and Energy Engineering Conference
PublicationTitleAbbrev APPEEC
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000823891
ssj0003203524
Score 1.5157214
Snippet Unpredictable plant parameter variations, external load disturbances and nonlinear dynamics which exist in ring permanent magnet torque motors (RPMTM)...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Load modeling
Mathematical model
Neural networks
Observers
Sliding mode control
Synchronous motors
Torque
Title Model Reference Sliding Mode Control for RPMTM with Neural Network Load Torque Observer
URI https://ieeexplore.ieee.org/document/6307495
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b8IwELaAqV36gKpveejYBEJwbI8VAqGqaaMWVDZkO46EikiFwtJf3zsnpA916JTYihLHtnSf7777jpAbxox22e19JTJvAOvgaUemCnjAuOGcuRpL8WM0mQ3u52zeILd1Loy11pHPrI-3Lpaf5maLrrJuBBsSAH2TNLmUZa5W7U_BiJGodF-wHfZR6RODymDUOPrMpMvrYpwDSmHBTu6paotKkSjoye5dkoxGQ6R99f3qkz9qrzjTMz4g8W7QJePkzd8W2jcfv_Qc__tXh6TzleRHk9p8HZGGXR-T_W_6hG3yipXSVrQWo6UvqyU-TLGfDkuWOwXYS5-TeBpTdOpSlPtQK7g4fjl9yFVKp_kG7A990ugDtpsOmY1H0-HEqyoxeEuAFwWcLyMhuWWAZ0IAWEZFjOvImEgqLQNrUpUB7FShzDgXpqczy9Wgp5iOtEyVUOEJaa3ztT0lVDnEJ6MUXgxHcyWFSqViaCeFBXt6Rto4RYv3UmxjUc3O-d_dF2QPl6kkhV2SVrHZ2itACYW-dtvjE44-sfE
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8QD-rFDzB-24NHGYzRdT0aAkFluChEbqTtuoRImCHj4l_ve92YH_HgaWuzbF3b5P363u_9HiE3jGlls9vbMkgaHViHhrJkKpe7jGvOma2xFI78waTzMGXTCrktc2GMMZZ8Zhy8tbH8ONVrdJU1fdiQAOi3yDZDXJFna5UeFYwZBYXyC7a9Nmp9YlgZzBpHr5mwmV2Mc8ApzN0IPhXtoNAkcluieRdFvV4XiV9tp_joj-or1vj090m4GXbOOXlz1ply9McvRcf__tcBqX-l-dGoNGCHpGKWR2Tvm0JhjbxirbQFLeVo6ctijg9T7KfdnOdOAfjS5ygchxTduhQFP-QCLpZhToepjOk4XYEFok8KvcBmVSeTfm_cHTSKWgyNOQCMDE6YfiC4YYBoPIBYWvqMK19rX0glXKNjmQDwlJ5IOA90SyWGy05LMuUrEctAesekukyX5oRQaTGf8GN4MRzOpQhkLCRDSxkYsKinpIZTNHvP5TZmxeyc_d19TXYG43A4G96PHs_JLi5ZThG7INVstTaXgBkydWW3yicXzrU-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+Asia-Pacific+Power+and+Energy+Engineering+Conference&rft.atitle=Model+Reference+Sliding+Mode+Control+for+RPMTM+with+Neural+Network+Load+Torque+Observer&rft.au=Bing+Peng&rft.au=Chengyuan+Wang&rft.au=Jiakuan+Xia&rft.au=Ting+Dong&rft.date=2012-03-01&rft.pub=IEEE&rft.isbn=9781457705458&rft.issn=2157-4839&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FAPPEEC.2012.6307495&rft.externalDocID=6307495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-4839&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-4839&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-4839&client=summon