Representational oriented component analysis (ROCA) for face recognition with one sample image per training class

Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational oriented component analysis (ROCA), an extension of OCA, to perform face recognition when just one sample per training class is available. Several...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 266 - 273 vol. 2
Main Authors De la Torre, F., Gross, R., Baker, S., Vijaya Kumar, B.V.K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.301

Cover

Loading…
Abstract Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational oriented component analysis (ROCA), an extension of OCA, to perform face recognition when just one sample per training class is available. Several novelties are introduced in order to improve generalization and efficiency: (1) combining several OCA classifiers based on different image representations of the unique training sample is shown to greatly improve the recognition performance. (2) To improve generalization and to account for small misregistration effect, a learned subspace is added to constrain the OCA solution, (3) a stable/efficient generalized eigenvector algorithm that solves the small size sample problem and avoids overfitting. Preliminary experiments in the FRGC Ver 1.0 dataset show that ROCA outperforms existing linear techniques (PCA, OCA) and some commercial systems.
AbstractList Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational oriented component analysis (ROCA), an extension of OCA, to perform face recognition when just one sample per training class is available. Several novelties are introduced in order to improve generalization and efficiency: (1) combining several OCA classifiers based on different image representations of the unique training sample is shown to greatly improve the recognition performance. (2) To improve generalization and to account for small misregistration effect, a learned subspace is added to constrain the OCA solution, (3) a stable/efficient generalized eigenvector algorithm that solves the small size sample problem and avoids overfitting. Preliminary experiments in the FRGC Ver 1.0 dataset show that ROCA outperforms existing linear techniques (PCA, OCA) and some commercial systems.
Author De la Torre, F.
Baker, S.
Gross, R.
Vijaya Kumar, B.V.K.
Author_xml – sequence: 1
  givenname: F.
  surname: De la Torre
  fullname: De la Torre, F.
  organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 2
  givenname: R.
  surname: Gross
  fullname: Gross, R.
  organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 3
  givenname: S.
  surname: Baker
  fullname: Baker, S.
  organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 4
  givenname: B.V.K.
  surname: Vijaya Kumar
  fullname: Vijaya Kumar, B.V.K.
BookMark eNpNUDtPwzAQtqBItKUjE4tHGBJ8fqUZq4iXVKmoAtbKSc7FKHWCHQn132MEA7ec7nvcd7oZmfjeIyGXwHIAVt5Wb8_bnDOmcsHghEyBaZHpEspTMmOFLhUXBeeTf8Q5WcT4wVKJUiwln5LPLQ4BI_rRjK73pqN9cGnCljb9YUiBfqQm4cfoIr3ebqrVDbV9oNY0SAM2_d67Hyf9cuM7TXoazWHokLqD2SMdMNAxGOed39OmMzFekDNruoiLvz4nr_d3L9Vjtt48PFWrdeagUGOmQaiWcSNQalkrq0CiWYpWcFVbsK02pWayVTVIqG0SacZRQNEUIBqwhZiTq9-9DhF3Q0j3hOMOpC5kesw35lVeDA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.301
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 273 vol. 2
ExternalDocumentID 1467452
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-6135d02a3e464b5f514ea83d325bf1fd6a9604d5b141bfe46602e317c713c1f73
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6135d02a3e464b5f514ea83d325bf1fd6a9604d5b141bfe46602e317c713c1f73
ParticipantIDs ieee_primary_1467452
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.7470767
Snippet Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational...
SourceID ieee
SourceType Publisher
StartPage 266
SubjectTerms Face detection
Face recognition
Image analysis
Image recognition
Independent component analysis
Linear discriminant analysis
Matched filters
Power system modeling
Principal component analysis
Samarium
Title Representational oriented component analysis (ROCA) for face recognition with one sample image per training class
URI https://ieeexplore.ieee.org/document/1467452
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHDwo2G1tPtYeZTiGMB3DyW6j-YIhttN1F_96X9K0E_HgrUkDaUM-fr-X934PoWvOEpVIHQdKSRLQOKJBHFMacMMGMhZ0IJkNFJ488fGcPi7YooHu6lgYrbVzPtNd--ju8lUut9ZU1rOrmjLYcPeAuJWxWrU9xcaYxp7m2TIBZsOT-kYhstlY3M0nJwFPwqSk8AmzLyKvxFOVk50YZ2_4Op2VphdiE8f8SMHiTqBRC02qby8dT96620J05dcvWcf__twB6uxi_fC0PsUOUUNnR6jlwSn2S38DVVX-h6qujT5mzo3WRy_BjMS5VU0GDIutp3qewTNOveoJvpk9D-9vMYBkbFLotHZdyjNsrcEY2uNNatWK8eodtjm8hs6qFBZYWpjfQfPRw8twHPgUDsEKcEkBxJQw1Y9SoimnghmAZzqNiSIREyY0iqdWHEYxEdJQGGjE-5EGSCOBO8vQDMgxambQ_QnCWsP-oSJgA9Au5CKRwNSUUiblodE6PkVtO6jLdanSsfTjefZ39TnadyKszphygZrF51ZfArwoxJWbV98Yc8fY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPOgJFYy7c_CgiQXaWegcDZGgAhIChhtpZ0mIsUUpF3-9b7phjAdvnekk005m-b43730PoWvOhBJS-45SkjjU96jj-5Q63LCO9EPakcwGCg9HvD-jT3M2r6C7MhZGa506n-mmfUzv8lUsN9ZU1rKrmjLYcHfg3Kcii9YqLSo2ytTPiZ4tE-A2XJR3Cp7Nx5LefXLicOGKjMQLZl94uRZPURZbOc5W93U8yYwvxKaO-ZGEJT2DejU0LL4-cz15a26SsCm_fgk7_vf39lFjG-2Hx-U5doAqOjpEtRye4nzxr6GqyABR1NXRxyR1pM3jl2BO4tjqJgOKxdZXPY7gGQe57gm-mbx0728xwGRsAui0dF6KI2ztwRja43Vg9Yrx8h02OryCzookFlhaoN9As97DtNt38iQOzhKQSQLUlDDV9gKiKachMwDQdOATRTwWGtcoHlh5GMVCl7qhgUa87WkANRLYs3RNhxyhagTdHyOsNewgygM-AO1cHgoJXE0pZQLuGq39E1S3g7pYZTodi3w8T_-uvkK7_elwsBg8jp7P0F4qyZqaVs5RNfnc6AsAG0l4mc6xb8g3yyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Representational+oriented+component+analysis+%28ROCA%29+for+face+recognition+with+one+sample+image+per+training+class&rft.au=De+la+Torre%2C+F.&rft.au=Gross%2C+R.&rft.au=Baker%2C+S.&rft.au=Vijaya+Kumar%2C+B.V.K.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=266&rft.epage=273+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.301&rft.externalDocID=1467452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon