Representational oriented component analysis (ROCA) for face recognition with one sample image per training class
Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational oriented component analysis (ROCA), an extension of OCA, to perform face recognition when just one sample per training class is available. Several...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 266 - 273 vol. 2 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.301 |
Cover
Loading…
Abstract | Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational oriented component analysis (ROCA), an extension of OCA, to perform face recognition when just one sample per training class is available. Several novelties are introduced in order to improve generalization and efficiency: (1) combining several OCA classifiers based on different image representations of the unique training sample is shown to greatly improve the recognition performance. (2) To improve generalization and to account for small misregistration effect, a learned subspace is added to constrain the OCA solution, (3) a stable/efficient generalized eigenvector algorithm that solves the small size sample problem and avoids overfitting. Preliminary experiments in the FRGC Ver 1.0 dataset show that ROCA outperforms existing linear techniques (PCA, OCA) and some commercial systems. |
---|---|
AbstractList | Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational oriented component analysis (ROCA), an extension of OCA, to perform face recognition when just one sample per training class is available. Several novelties are introduced in order to improve generalization and efficiency: (1) combining several OCA classifiers based on different image representations of the unique training sample is shown to greatly improve the recognition performance. (2) To improve generalization and to account for small misregistration effect, a learned subspace is added to constrain the OCA solution, (3) a stable/efficient generalized eigenvector algorithm that solves the small size sample problem and avoids overfitting. Preliminary experiments in the FRGC Ver 1.0 dataset show that ROCA outperforms existing linear techniques (PCA, OCA) and some commercial systems. |
Author | De la Torre, F. Baker, S. Gross, R. Vijaya Kumar, B.V.K. |
Author_xml | – sequence: 1 givenname: F. surname: De la Torre fullname: De la Torre, F. organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 givenname: R. surname: Gross fullname: Gross, R. organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 3 givenname: S. surname: Baker fullname: Baker, S. organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 4 givenname: B.V.K. surname: Vijaya Kumar fullname: Vijaya Kumar, B.V.K. |
BookMark | eNpNUDtPwzAQtqBItKUjE4tHGBJ8fqUZq4iXVKmoAtbKSc7FKHWCHQn132MEA7ec7nvcd7oZmfjeIyGXwHIAVt5Wb8_bnDOmcsHghEyBaZHpEspTMmOFLhUXBeeTf8Q5WcT4wVKJUiwln5LPLQ4BI_rRjK73pqN9cGnCljb9YUiBfqQm4cfoIr3ebqrVDbV9oNY0SAM2_d67Hyf9cuM7TXoazWHokLqD2SMdMNAxGOed39OmMzFekDNruoiLvz4nr_d3L9Vjtt48PFWrdeagUGOmQaiWcSNQalkrq0CiWYpWcFVbsK02pWayVTVIqG0SacZRQNEUIBqwhZiTq9-9DhF3Q0j3hOMOpC5kesw35lVeDA |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.301 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 273 vol. 2 |
ExternalDocumentID | 1467452 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-6135d02a3e464b5f514ea83d325bf1fd6a9604d5b141bfe46602e317c713c1f73 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-6135d02a3e464b5f514ea83d325bf1fd6a9604d5b141bfe46602e317c713c1f73 |
ParticipantIDs | ieee_primary_1467452 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.7470767 |
Snippet | Subspace methods such as PCA, LDA, ICA have become a standard tool to perform visual learning and recognition. In this paper we propose representational... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 266 |
SubjectTerms | Face detection Face recognition Image analysis Image recognition Independent component analysis Linear discriminant analysis Matched filters Power system modeling Principal component analysis Samarium |
Title | Representational oriented component analysis (ROCA) for face recognition with one sample image per training class |
URI | https://ieeexplore.ieee.org/document/1467452 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHDwo2G1tPtYeZTiGMB3DyW6j-YIhttN1F_96X9K0E_HgrUkDaUM-fr-X934PoWvOEpVIHQdKSRLQOKJBHFMacMMGMhZ0IJkNFJ488fGcPi7YooHu6lgYrbVzPtNd--ju8lUut9ZU1rOrmjLYcPeAuJWxWrU9xcaYxp7m2TIBZsOT-kYhstlY3M0nJwFPwqSk8AmzLyKvxFOVk50YZ2_4Op2VphdiE8f8SMHiTqBRC02qby8dT96620J05dcvWcf__twB6uxi_fC0PsUOUUNnR6jlwSn2S38DVVX-h6qujT5mzo3WRy_BjMS5VU0GDIutp3qewTNOveoJvpk9D-9vMYBkbFLotHZdyjNsrcEY2uNNatWK8eodtjm8hs6qFBZYWpjfQfPRw8twHPgUDsEKcEkBxJQw1Y9SoimnghmAZzqNiSIREyY0iqdWHEYxEdJQGGjE-5EGSCOBO8vQDMgxambQ_QnCWsP-oSJgA9Au5CKRwNSUUiblodE6PkVtO6jLdanSsfTjefZ39TnadyKszphygZrF51ZfArwoxJWbV98Yc8fY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8JAFJ4QPOgJFYy7c_CgiQXaWegcDZGgAhIChhtpZ0mIsUUpF3-9b7phjAdvnekk005m-b43730PoWvOhBJS-45SkjjU96jj-5Q63LCO9EPakcwGCg9HvD-jT3M2r6C7MhZGa506n-mmfUzv8lUsN9ZU1rKrmjLYcHfg3Kcii9YqLSo2ytTPiZ4tE-A2XJR3Cp7Nx5LefXLicOGKjMQLZl94uRZPURZbOc5W93U8yYwvxKaO-ZGEJT2DejU0LL4-cz15a26SsCm_fgk7_vf39lFjG-2Hx-U5doAqOjpEtRye4nzxr6GqyABR1NXRxyR1pM3jl2BO4tjqJgOKxdZXPY7gGQe57gm-mbx0728xwGRsAui0dF6KI2ztwRja43Vg9Yrx8h02OryCzookFlhaoN9As97DtNt38iQOzhKQSQLUlDDV9gKiKachMwDQdOATRTwWGtcoHlh5GMVCl7qhgUa87WkANRLYs3RNhxyhagTdHyOsNewgygM-AO1cHgoJXE0pZQLuGq39E1S3g7pYZTodi3w8T_-uvkK7_elwsBg8jp7P0F4qyZqaVs5RNfnc6AsAG0l4mc6xb8g3yyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Representational+oriented+component+analysis+%28ROCA%29+for+face+recognition+with+one+sample+image+per+training+class&rft.au=De+la+Torre%2C+F.&rft.au=Gross%2C+R.&rft.au=Baker%2C+S.&rft.au=Vijaya+Kumar%2C+B.V.K.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=266&rft.epage=273+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.301&rft.externalDocID=1467452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |