VizWiz Grand Challenge: Answering Visual Questions from Blind People
The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial VQA settings. We propose VizWiz, the first goal-oriented VQA dataset arising from a natural VQA setting. VizWiz consists of over 31,000 visual...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3608 - 3617 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial VQA settings. We propose VizWiz, the first goal-oriented VQA dataset arising from a natural VQA setting. VizWiz consists of over 31,000 visual questions originating from blind people who each took a picture using a mobile phone and recorded a spoken question about it, together with 10 crowdsourced answers per visual question. VizWiz differs from the many existing VQA datasets because (1) images are captured by blind photographers and so are often poor quality, (2) questions are spoken and so are more conversational, and (3) often visual questions cannot be answered. Evaluation of modern algorithms for answering visual questions and deciding if a visual question is answerable reveals that VizWiz is a challenging dataset. We introduce this dataset to encourage a larger community to develop more generalized algorithms that can assist blind people. |
---|---|
AbstractList | The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial VQA settings. We propose VizWiz, the first goal-oriented VQA dataset arising from a natural VQA setting. VizWiz consists of over 31,000 visual questions originating from blind people who each took a picture using a mobile phone and recorded a spoken question about it, together with 10 crowdsourced answers per visual question. VizWiz differs from the many existing VQA datasets because (1) images are captured by blind photographers and so are often poor quality, (2) questions are spoken and so are more conversational, and (3) often visual questions cannot be answered. Evaluation of modern algorithms for answering visual questions and deciding if a visual question is answerable reveals that VizWiz is a challenging dataset. We introduce this dataset to encourage a larger community to develop more generalized algorithms that can assist blind people. |
Author | Luo, Jiebo Bigham, Jeffrey P. Li, Qing Lin, Chi Gurari, Danna Grauman, Kristen Guo, Anhong Stangl, Abigale J. |
Author_xml | – sequence: 1 givenname: Danna surname: Gurari fullname: Gurari, Danna – sequence: 2 givenname: Qing surname: Li fullname: Li, Qing – sequence: 3 givenname: Abigale J. surname: Stangl fullname: Stangl, Abigale J. – sequence: 4 givenname: Anhong surname: Guo fullname: Guo, Anhong – sequence: 5 givenname: Chi surname: Lin fullname: Lin, Chi – sequence: 6 givenname: Kristen surname: Grauman fullname: Grauman, Kristen – sequence: 7 givenname: Jiebo surname: Luo fullname: Luo, Jiebo – sequence: 8 givenname: Jeffrey P. surname: Bigham fullname: Bigham, Jeffrey P. |
BookMark | eNotzL1OwzAUQGGDQKKUzAwsfoEU_8T2NVtJoSBVoiAIY-Uk18Uodaq4FaJPDxJMZ_rOOTmJfURCLjmbcM7sdVktXyaCcZgwJoEdkcwa4EqC1oVg9piMONMy15bbM5Kl9MkYExokFGpEZlU4vIcDnQ8utrT8cF2HcY03dBrTFw4hrmkV0t519HmPaRf6mKgf-g297cIvWGK_7fCCnHrXJcz-OyZv93ev5UO-eJo_ltNFHrhRu1y16Ou61cppBVYBGI2sgUKKthGNccZzI7zHojbetprXrVKOaWi0c4XQUo7J1d83IOJqO4SNG75XoAwUBuQPQSZNEA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00380 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 3617 |
ExternalDocumentID | 8578478 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-5defbbd65a658958876e0c8432dc2c7a7f172ffe4b7f9d61bd55a068c6aa42633 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-5defbbd65a658958876e0c8432dc2c7a7f172ffe4b7f9d61bd55a068c6aa42633 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578478 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.551442 |
Snippet | The study of algorithms to automatically answer visual questions currently is motivated by visual question answering (VQA) datasets constructed in artificial... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3608 |
SubjectTerms | Blindness Computer vision Lighting Mobile handsets Prediction algorithms Shape Visualization |
Title | VizWiz Grand Challenge: Answering Visual Questions from Blind People |
URI | https://ieeexplore.ieee.org/document/8578478 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6AkydUMP5ODx4djK3tWm-KIjHBECPIjfTHW0I0w8gWE_56226gMR68bTssTdvtfd_r976H0AWnSqUSLMmRlAREEBnwnkvAa7D4JAVBPFEcPbLhhDzM6KyGLre1MADgxWfQcZf-LN8sdeFSZV1utxdJeB3VLXEra7W2-ZSI8ZhXJ2TuPrbMhgleufn0QtHtT8dPTsvlxJOxs4H80U7FR5NBE4024yhFJK-dIlcdvf5l0fjfge6i9nfdHh5vI9IeqkG2j5oV0MTVZ7xqodvpYv2yWON7G6gM7m_6qVzh62z16b0J8XSxKuQb9vlQtzOxq0PBNxaUGjz2qvM2mgzunvvDoGqnECwsRsgDaiBVyjAqLeoQ1P5dGISakzgyOtKJTFILZtIUiEpSYVhPGUplyLhmUjpb9_gANbJlBocI80SEkpEQQANxDCaGUCgW2TcmhHJzhFpuUubvpWPGvJqP478fn6AdtyylAOsUNfKPAs5sqM_VuV_jL1_Opzc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pCBeNve_DoYD_arvOmKKICIQaQG2nXt2TRDCNbTPjrbbeBxnjwtu2wNG2373uv3_seQhecShkJ0EGOoMQiAREWd0wCPgTNTyIISB4o9gesOyaPUzqtoMt1LQwA5OIzaJrL_CxfzcPMpMpaXG8v4vMNtKlxnzpFtdY6o-Iy7vHyjMzcezq2YQEv_XwcO2i1J8Nno-Yy8knPGEH-aKiS40mnhvqrkRQyktdmlspmuPxl0vjfoe6gxnflHh6uMWkXVSDZQ7WSauLyQ17U0e0kXr7ES3yvoUrh9qqjyhW-ThafuTshnsSLTLzhPCNq9iY2lSj4RtNShYe57ryBxp27UbtrlQ0VrFizhNSiCiIpFaNC846A6v8LAzvkxHNV6Ia-8CNNZ6IIiPSjQDFHKkqFzXjIhDDG7t4-qibzBA4Q5n5gC0ZsgBCIiWE8sAPJXP1Gn1CuDlHdTMrsvfDMmJXzcfT343O01R31e7Pew-DpGG2bJSrkWCeomn5kcKqBP5Vn-Xp_AUtjqoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=VizWiz+Grand+Challenge%3A+Answering+Visual+Questions+from+Blind+People&rft.au=Gurari%2C+Danna&rft.au=Li%2C+Qing&rft.au=Stangl%2C+Abigale+J.&rft.au=Guo%2C+Anhong&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3608&rft.epage=3617&rft_id=info:doi/10.1109%2FCVPR.2018.00380&rft.externalDocID=8578478 |