Distribution Transformer Oil Age Prediction Using Neuro Wavelet

The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various disturbances on the transformers can cause a decrease of their performance, so that they cannot reach the operation life. This study proposes a simul...

Full description

Saved in:
Bibliographic Details
Published in2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) pp. 202 - 207
Main Authors Setiawati, Novie Elok, Rosmaliati, Lystianingrum, Vita, Priyadi, Ardyono, Purnomo, Mauridhi Hery
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various disturbances on the transformers can cause a decrease of their performance, so that they cannot reach the operation life. This study proposes a simulation study to predict the transformer oil age by using wavelet transform and backpropagation neural network. Transformer's current measurement was carried out in North Surabaya with a rating of 20 KV/380-220V and capacity of 100~\mathrm {k}\mathrm {V}\mathrm {A}. The secondary current of the distribution transformer has been processed using the haar wavelet to obtain the detail coefficients, which is used to calculate the energy and PSD (power spectral density) value. Energy value and PSD are the input data on training and testing of back propagation neural network, while the output (target) is the transformer oil age. The simulation results show that the proposed method can predict the transformer oil age with an accuracy rate of 89.5795%.
AbstractList The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various disturbances on the transformers can cause a decrease of their performance, so that they cannot reach the operation life. This study proposes a simulation study to predict the transformer oil age by using wavelet transform and backpropagation neural network. Transformer's current measurement was carried out in North Surabaya with a rating of 20 KV/380-220V and capacity of 100~\mathrm {k}\mathrm {V}\mathrm {A}. The secondary current of the distribution transformer has been processed using the haar wavelet to obtain the detail coefficients, which is used to calculate the energy and PSD (power spectral density) value. Energy value and PSD are the input data on training and testing of back propagation neural network, while the output (target) is the transformer oil age. The simulation results show that the proposed method can predict the transformer oil age with an accuracy rate of 89.5795%.
Author Purnomo, Mauridhi Hery
Lystianingrum, Vita
Rosmaliati
Setiawati, Novie Elok
Priyadi, Ardyono
Author_xml – sequence: 1
  givenname: Novie Elok
  surname: Setiawati
  fullname: Setiawati, Novie Elok
  organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
– sequence: 2
  surname: Rosmaliati
  fullname: Rosmaliati
  organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
– sequence: 3
  givenname: Vita
  surname: Lystianingrum
  fullname: Lystianingrum, Vita
  organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
– sequence: 4
  givenname: Ardyono
  surname: Priyadi
  fullname: Priyadi, Ardyono
  organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
– sequence: 5
  givenname: Mauridhi Hery
  surname: Purnomo
  fullname: Purnomo, Mauridhi Hery
  organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
BookMark eNotj81Kw0AYAFdQUGueQA_7Aom7--3vSUoaNVCshxSPZZN8KSttIrup4NsL2tMcBgbmllyO04iEPHBWcM7cY13WTVWtCsG4LawCaYFdkMwZyxVYLQ04eU2ylD4ZY0JbpTXckKdVSHMM7WkO00ib6Mc0TPGIkW7CgS73SN8j9qH709sUxj19w1Oc6If_xgPOd-Rq8IeE2ZkLsn2umvI1X29e6nK5zgM3as5V67xulbZMiqF3HRijvIJOeMelM2roDfrBcs2V11q2WhkPAi1I6VAICwty_98NiLj7iuHo48_uvAm_uW9JoA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICITEED.2018.8534830
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538647394
1538647397
EndPage 207
ExternalDocumentID 8534830
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-5b9a6b568042fd9c3775a53c2a914975fd7eaf81615a664b657a32e83449e2283
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:52 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-5b9a6b568042fd9c3775a53c2a914975fd7eaf81615a664b657a32e83449e2283
PageCount 6
ParticipantIDs ieee_primary_8534830
PublicationCentury 2000
PublicationDate 2018-July
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE)
PublicationTitleAbbrev ICITEED
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685663
Score 1.7224672
Snippet The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various...
SourceID ieee
SourceType Publisher
StartPage 202
SubjectTerms Backpropagation
Backpropagation neural network
Current measurement
distribution transformer
energy value
haar wavelet
Oil insulation
Oils
Power transformers
pSD
Wavelet transforms
Title Distribution Transformer Oil Age Prediction Using Neuro Wavelet
URI https://ieeexplore.ieee.org/document/8534830
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA21K1cqrfgmC5fO1Glek5VIH6hQddFidyWZ3EhRWinTjV9vbmZaUVy4GzKEJIRwX-eeQ8il9iozPvOJs1Ym3BUyCbFKjol8x0FZUBL7nUeP8m7CH6Zi2iBX214YAIjgM0jxM9by3bJYY6qsE0wLz1kI0HeU1lWv1jaf0pV58ExY3R2XXevOfS88_kEf4Vt5Wk_9oaESTchwj4w2i1fIkbd0Xdq0-PzFy_jf3e2T9nezHn3emqED0oBFi9z0kRC31rKi4413Civ6NH-nt684BUs08XeEDdBI00FfDCpRlG0yGQ7Gvbuk1kpI5sEBKBNhtZFWyDw8Qu90wZQSRrCia3SIgZTwToHxOfp3RkpupVCGdQFVNjQgBc4haS6WCzgi1CpjjAXwXDKOhUAnrRYhLmGQS8jUMWnh4WcfFR3GrD73yd_Dp2QXL6BCuJ6RZrlaw3mw46W9iBf4BcX7nRI
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsAEqEV8k4GRpKSOz86EUD_UQlsYWtGtspMzqkAtqtKFX48vSYtADGyRI8u2LOve3b17x9h1bGWobWj91BjwozQB3_kqigL5aYTSoASqdx6OoDeJHqZiWmE321oYRMzJZxjQZ57LT5fJmkJlDWdaIsWdg77jcLWColprG1FpgnLYhJf1ceFt3Oi33PPvtInApYJy8o8uKrkR6e6z4Wb5gjvyFqwzEySfv5QZ_7u_A1b_LtfznreG6JBVcFFjd22SxC27WXnjDT7Flfc0f_fuX2kKJWny3zlxwMuFOrwXTb0osjqbdDvjVs8vuyX4cwcBMl-YWIMRoNwztGmccCmFFjxp6th5QVLYVKK2ihCeBogMCKl5E6nPRowkgnPEqovlAo-ZZ6TW2iDaCHhEqcAUTCycZ8JRAYbyhNXo8LOPQhBjVp779O_hK7bbGw8Hs0F_9HjG9ugyCr7rOatmqzVeOKuemcv8Mr8AL6KgXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+10th+International+Conference+on+Information+Technology+and+Electrical+Engineering+%28ICITEE%29&rft.atitle=Distribution+Transformer+Oil+Age+Prediction+Using+Neuro+Wavelet&rft.au=Setiawati%2C+Novie+Elok&rft.au=Rosmaliati&rft.au=Lystianingrum%2C+Vita&rft.au=Priyadi%2C+Ardyono&rft.date=2018-07-01&rft.pub=IEEE&rft.spage=202&rft.epage=207&rft_id=info:doi/10.1109%2FICITEED.2018.8534830&rft.externalDocID=8534830