Distribution Transformer Oil Age Prediction Using Neuro Wavelet
The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various disturbances on the transformers can cause a decrease of their performance, so that they cannot reach the operation life. This study proposes a simul...
Saved in:
Published in | 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) pp. 202 - 207 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various disturbances on the transformers can cause a decrease of their performance, so that they cannot reach the operation life. This study proposes a simulation study to predict the transformer oil age by using wavelet transform and backpropagation neural network. Transformer's current measurement was carried out in North Surabaya with a rating of 20 KV/380-220V and capacity of 100~\mathrm {k}\mathrm {V}\mathrm {A}. The secondary current of the distribution transformer has been processed using the haar wavelet to obtain the detail coefficients, which is used to calculate the energy and PSD (power spectral density) value. Energy value and PSD are the input data on training and testing of back propagation neural network, while the output (target) is the transformer oil age. The simulation results show that the proposed method can predict the transformer oil age with an accuracy rate of 89.5795%. |
---|---|
AbstractList | The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various disturbances on the transformers can cause a decrease of their performance, so that they cannot reach the operation life. This study proposes a simulation study to predict the transformer oil age by using wavelet transform and backpropagation neural network. Transformer's current measurement was carried out in North Surabaya with a rating of 20 KV/380-220V and capacity of 100~\mathrm {k}\mathrm {V}\mathrm {A}. The secondary current of the distribution transformer has been processed using the haar wavelet to obtain the detail coefficients, which is used to calculate the energy and PSD (power spectral density) value. Energy value and PSD are the input data on training and testing of back propagation neural network, while the output (target) is the transformer oil age. The simulation results show that the proposed method can predict the transformer oil age with an accuracy rate of 89.5795%. |
Author | Purnomo, Mauridhi Hery Lystianingrum, Vita Rosmaliati Setiawati, Novie Elok Priyadi, Ardyono |
Author_xml | – sequence: 1 givenname: Novie Elok surname: Setiawati fullname: Setiawati, Novie Elok organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia – sequence: 2 surname: Rosmaliati fullname: Rosmaliati organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia – sequence: 3 givenname: Vita surname: Lystianingrum fullname: Lystianingrum, Vita organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia – sequence: 4 givenname: Ardyono surname: Priyadi fullname: Priyadi, Ardyono organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia – sequence: 5 givenname: Mauridhi Hery surname: Purnomo fullname: Purnomo, Mauridhi Hery organization: Departement of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia |
BookMark | eNotj81Kw0AYAFdQUGueQA_7Aom7--3vSUoaNVCshxSPZZN8KSttIrup4NsL2tMcBgbmllyO04iEPHBWcM7cY13WTVWtCsG4LawCaYFdkMwZyxVYLQ04eU2ylD4ZY0JbpTXckKdVSHMM7WkO00ib6Mc0TPGIkW7CgS73SN8j9qH709sUxj19w1Oc6If_xgPOd-Rq8IeE2ZkLsn2umvI1X29e6nK5zgM3as5V67xulbZMiqF3HRijvIJOeMelM2roDfrBcs2V11q2WhkPAi1I6VAICwty_98NiLj7iuHo48_uvAm_uW9JoA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICITEED.2018.8534830 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538647394 1538647397 |
EndPage | 207 |
ExternalDocumentID | 8534830 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-5b9a6b568042fd9c3775a53c2a914975fd7eaf81615a664b657a32e83449e2283 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:52 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-5b9a6b568042fd9c3775a53c2a914975fd7eaf81615a664b657a32e83449e2283 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8534830 |
PublicationCentury | 2000 |
PublicationDate | 2018-July |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-July |
PublicationDecade | 2010 |
PublicationTitle | 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE) |
PublicationTitleAbbrev | ICITEED |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002685663 |
Score | 1.7224672 |
Snippet | The distribution transformer is one of the vital components in the power system distribution, which deliver electricity power to the consumer. Various... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 202 |
SubjectTerms | Backpropagation Backpropagation neural network Current measurement distribution transformer energy value haar wavelet Oil insulation Oils Power transformers pSD Wavelet transforms |
Title | Distribution Transformer Oil Age Prediction Using Neuro Wavelet |
URI | https://ieeexplore.ieee.org/document/8534830 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA21K1cqrfgmC5fO1Glek5VIH6hQddFidyWZ3EhRWinTjV9vbmZaUVy4GzKEJIRwX-eeQ8il9iozPvOJs1Ym3BUyCbFKjol8x0FZUBL7nUeP8m7CH6Zi2iBX214YAIjgM0jxM9by3bJYY6qsE0wLz1kI0HeU1lWv1jaf0pV58ExY3R2XXevOfS88_kEf4Vt5Wk_9oaESTchwj4w2i1fIkbd0Xdq0-PzFy_jf3e2T9nezHn3emqED0oBFi9z0kRC31rKi4413Civ6NH-nt684BUs08XeEDdBI00FfDCpRlG0yGQ7Gvbuk1kpI5sEBKBNhtZFWyDw8Qu90wZQSRrCia3SIgZTwToHxOfp3RkpupVCGdQFVNjQgBc4haS6WCzgi1CpjjAXwXDKOhUAnrRYhLmGQS8jUMWnh4WcfFR3GrD73yd_Dp2QXL6BCuJ6RZrlaw3mw46W9iBf4BcX7nRI |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsAEqEV8k4GRpKSOz86EUD_UQlsYWtGtspMzqkAtqtKFX48vSYtADGyRI8u2LOve3b17x9h1bGWobWj91BjwozQB3_kqigL5aYTSoASqdx6OoDeJHqZiWmE321oYRMzJZxjQZ57LT5fJmkJlDWdaIsWdg77jcLWColprG1FpgnLYhJf1ceFt3Oi33PPvtInApYJy8o8uKrkR6e6z4Wb5gjvyFqwzEySfv5QZ_7u_A1b_LtfznreG6JBVcFFjd22SxC27WXnjDT7Flfc0f_fuX2kKJWny3zlxwMuFOrwXTb0osjqbdDvjVs8vuyX4cwcBMl-YWIMRoNwztGmccCmFFjxp6th5QVLYVKK2ihCeBogMCKl5E6nPRowkgnPEqovlAo-ZZ6TW2iDaCHhEqcAUTCycZ8JRAYbyhNXo8LOPQhBjVp779O_hK7bbGw8Hs0F_9HjG9ugyCr7rOatmqzVeOKuemcv8Mr8AL6KgXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+10th+International+Conference+on+Information+Technology+and+Electrical+Engineering+%28ICITEE%29&rft.atitle=Distribution+Transformer+Oil+Age+Prediction+Using+Neuro+Wavelet&rft.au=Setiawati%2C+Novie+Elok&rft.au=Rosmaliati&rft.au=Lystianingrum%2C+Vita&rft.au=Priyadi%2C+Ardyono&rft.date=2018-07-01&rft.pub=IEEE&rft.spage=202&rft.epage=207&rft_id=info:doi/10.1109%2FICITEED.2018.8534830&rft.externalDocID=8534830 |