On the Maximal Code Length of Optimal Linear LRC Codes with Availability
A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and...
Saved in:
Published in | 2018 Engineering and Telecommunication (EnT-MIPT) pp. 54 - 57 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/EnT-MIPT.2018.00018 |
Cover
Loading…
Abstract | A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties. |
---|---|
AbstractList | A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties. |
Author | Nazirkhanova, Kamilla Frolov, Alexey Kruglik, Stanislav |
Author_xml | – sequence: 1 givenname: Stanislav surname: Kruglik fullname: Kruglik, Stanislav email: kruglik@phystech.edu organization: Skolkovo Institute of Science and Technology – sequence: 2 givenname: Kamilla surname: Nazirkhanova fullname: Nazirkhanova, Kamilla email: kamilla.nazirkhanova@phystech.edu organization: Skolkovo Institute of Science and Technology – sequence: 3 givenname: Alexey surname: Frolov fullname: Frolov, Alexey email: al.frolov@skoltech.ru organization: Skolkovo Institute of Science and Technology |
BookMark | eNotjs1Kw0AUhUfQhdY-QTfzAql3_meWJVRbSIlIXJeJc8cOxElJg9q3N7RuzgeHj8N5ILe5z0jIgsGSMXBP69wUu-1rs-TA7BJgyhsyd8Yywy0DKbi8J5s60_GAdOd_05fvaNkHpBXmz_FA-0jr43ipq5TRD7R6Ky_Gif6kSVh9-9T5NnVpPD-Su-i7E87_OSPvz-um3BRV_bItV1WRmFFjobREhw680Rq1gsBFsApUDLHVgXHZOkShQWkvEKK1_IMJCI4ZlBhZFDOyuO4mRNwfh-necN5bo4wURvwBPphIvw |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/EnT-MIPT.2018.00018 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728104324 1728104327 |
EndPage | 57 |
ExternalDocumentID | 8757437 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-564e9e90a766e650d23d8505fdfb6d124b9ee36056a3e0f882c130d917e4ef1f3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 13 06:22:39 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-564e9e90a766e650d23d8505fdfb6d124b9ee36056a3e0f882c130d917e4ef1f3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8757437 |
PublicationCentury | 2000 |
PublicationDate | 2018-Nov |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov |
PublicationDecade | 2010 |
PublicationTitle | 2018 Engineering and Telecommunication (EnT-MIPT) |
PublicationTitleAbbrev | EnT-MIPT |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6790746 |
Snippet | A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 54 |
SubjectTerms | Distributed databases distributed storage index coding Indexes information theory Linear codes locality Network coding Upper bound |
Title | On the Maximal Code Length of Optimal Linear LRC Codes with Availability |
URI | https://ieeexplore.ieee.org/document/8757437 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3e_Bo2nx1szlKaanS2CIt9FZ2s7NarIloKuqvdzapH4gHb2EJJMwu-97sznsDcOZJ4XncF_a60XXCSCpHCOSOQeUaYWQclCKx5JoPZ-HVvDuvwfmXFgYRy-IzbNvH8i5f5-naHpV1rPl6GER1qNMyq7RaGyMhz407_WzqJJeTqa3XsgWSrm3k8aNlSokYg21IPr9VFYrct9eFaqfvv2wY__szO9D61uaxyRfq7EINsyYMxxkjJscS-bp8kCvWyzWyEWa3xR3LDRvTvmCHKfGkhc1GN73yjWdmT2HZxYtcriq77rcWzAb9aW_obHokOEsC_sLp8hBjjF0ZcY7EtrQfaEGsxmijuCbwVjFiQDkLlwFS9IWfEmppStIwROOZYA8aWZ7hPjAjZET8iQhNGoVaitg3ntIyFSmlLZRXHEDTRmHxWNlgLDYBOPx7-Ai27DxUsr1jaBRPazwh_C7UaTlxH0gzm1s |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwX7RdUdDIEM3IGYk3Ei3vioRN6PDqH-9rxuiMR68NU2TLa_Lvu-17_seIReW4JbFbK6vG03D9URicA7MUJCYiivhO6VILBqyYOJeTzvTGrlca2EAoCw-g5Yelnf5Mk-X-qisrc3XXcfbIJuI-26nUmutrIQs02_3stiIBuNYV2zpEklTt_L40TSlxIz-Dom-nlaVijy0lkXSSj9-GTH-93V2SfNbnUfHa9zZIzXIGiQYZRS5HI3E2_xRLGg3l0BDyO6Ke5orOsI_g57G1BM_bRredssVL1Sfw9KrVzFfVIbd700y6ffibmCsuiQYc4T-wugwF3zwTeExBsi3pO1IjrxGSZUwifCd-AAOZi1MOIDx53aKuCUxTQMXlKWcfVLP8gwOCFVceMigkNKknisF921lJVKkPMXEBTOLQ9LQUZg9VUYYs1UAjv6ePidbQRyFs3AwvDkm23pPKhHfCakXz0s4RTQvkrNyEz8BnHeeqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Engineering+and+Telecommunication+%28EnT-MIPT%29&rft.atitle=On+the+Maximal+Code+Length+of+Optimal+Linear+LRC+Codes+with+Availability&rft.au=Kruglik%2C+Stanislav&rft.au=Nazirkhanova%2C+Kamilla&rft.au=Frolov%2C+Alexey&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=54&rft.epage=57&rft_id=info:doi/10.1109%2FEnT-MIPT.2018.00018&rft.externalDocID=8757437 |