On the Maximal Code Length of Optimal Linear LRC Codes with Availability

A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and...

Full description

Saved in:
Bibliographic Details
Published in2018 Engineering and Telecommunication (EnT-MIPT) pp. 54 - 57
Main Authors Kruglik, Stanislav, Nazirkhanova, Kamilla, Frolov, Alexey
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2018
Subjects
Online AccessGet full text
DOI10.1109/EnT-MIPT.2018.00018

Cover

Loading…
Abstract A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties.
AbstractList A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set [1], [2], [3], [4], [5]. These codes were first proposed in [1] and immediate become popular due to obvious applications in distributed and cloud storage systems. Natural generalization of LRC codes is LRC codes with availability in which each code symbol has more than one disjoint recovering set. A LRC codes with availability is said to be optimal if its minimum distance achieves the Singleton- like bound developed by Kruglik et. al in this paper we study the maximum code length of q-ary optimal LRC with availability and then derive some structural properties.
Author Nazirkhanova, Kamilla
Frolov, Alexey
Kruglik, Stanislav
Author_xml – sequence: 1
  givenname: Stanislav
  surname: Kruglik
  fullname: Kruglik, Stanislav
  email: kruglik@phystech.edu
  organization: Skolkovo Institute of Science and Technology
– sequence: 2
  givenname: Kamilla
  surname: Nazirkhanova
  fullname: Nazirkhanova, Kamilla
  email: kamilla.nazirkhanova@phystech.edu
  organization: Skolkovo Institute of Science and Technology
– sequence: 3
  givenname: Alexey
  surname: Frolov
  fullname: Frolov, Alexey
  email: al.frolov@skoltech.ru
  organization: Skolkovo Institute of Science and Technology
BookMark eNotjs1Kw0AUhUfQhdY-QTfzAql3_meWJVRbSIlIXJeJc8cOxElJg9q3N7RuzgeHj8N5ILe5z0jIgsGSMXBP69wUu-1rs-TA7BJgyhsyd8Yywy0DKbi8J5s60_GAdOd_05fvaNkHpBXmz_FA-0jr43ipq5TRD7R6Ky_Gif6kSVh9-9T5NnVpPD-Su-i7E87_OSPvz-um3BRV_bItV1WRmFFjobREhw680Rq1gsBFsApUDLHVgXHZOkShQWkvEKK1_IMJCI4ZlBhZFDOyuO4mRNwfh-necN5bo4wURvwBPphIvw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EnT-MIPT.2018.00018
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728104324
1728104327
EndPage 57
ExternalDocumentID 8757437
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-564e9e90a766e650d23d8505fdfb6d124b9ee36056a3e0f882c130d917e4ef1f3
IEDL.DBID RIE
IngestDate Wed Aug 13 06:22:39 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-564e9e90a766e650d23d8505fdfb6d124b9ee36056a3e0f882c130d917e4ef1f3
PageCount 4
ParticipantIDs ieee_primary_8757437
PublicationCentury 2000
PublicationDate 2018-Nov
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov
PublicationDecade 2010
PublicationTitle 2018 Engineering and Telecommunication (EnT-MIPT)
PublicationTitleAbbrev EnT-MIPT
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6790746
Snippet A code over finite alphabet is said to be locally recoverable (LRC) if each code symbol is function of small number of other symbols forming the recovering set...
SourceID ieee
SourceType Publisher
StartPage 54
SubjectTerms Distributed databases
distributed storage
index coding
Indexes
information theory
Linear codes
locality
Network coding
Upper bound
Title On the Maximal Code Length of Optimal Linear LRC Codes with Availability
URI https://ieeexplore.ieee.org/document/8757437
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3e_Bo2nx1szlKaanS2CIt9FZ2s7NarIloKuqvdzapH4gHb2EJJMwu-97sznsDcOZJ4XncF_a60XXCSCpHCOSOQeUaYWQclCKx5JoPZ-HVvDuvwfmXFgYRy-IzbNvH8i5f5-naHpV1rPl6GER1qNMyq7RaGyMhz407_WzqJJeTqa3XsgWSrm3k8aNlSokYg21IPr9VFYrct9eFaqfvv2wY__szO9D61uaxyRfq7EINsyYMxxkjJscS-bp8kCvWyzWyEWa3xR3LDRvTvmCHKfGkhc1GN73yjWdmT2HZxYtcriq77rcWzAb9aW_obHokOEsC_sLp8hBjjF0ZcY7EtrQfaEGsxmijuCbwVjFiQDkLlwFS9IWfEmppStIwROOZYA8aWZ7hPjAjZET8iQhNGoVaitg3ntIyFSmlLZRXHEDTRmHxWNlgLDYBOPx7-Ai27DxUsr1jaBRPazwh_C7UaTlxH0gzm1s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4QD3pSA8bf9uDRwX7RdUdDIEM3IGYk3Ei3vioRN6PDqH-9rxuiMR68NU2TLa_Lvu-17_seIReW4JbFbK6vG03D9URicA7MUJCYiivhO6VILBqyYOJeTzvTGrlca2EAoCw-g5Yelnf5Mk-X-qisrc3XXcfbIJuI-26nUmutrIQs02_3stiIBuNYV2zpEklTt_L40TSlxIz-Dom-nlaVijy0lkXSSj9-GTH-93V2SfNbnUfHa9zZIzXIGiQYZRS5HI3E2_xRLGg3l0BDyO6Ke5orOsI_g57G1BM_bRredssVL1Sfw9KrVzFfVIbd700y6ffibmCsuiQYc4T-wugwF3zwTeExBsi3pO1IjrxGSZUwifCd-AAOZi1MOIDx53aKuCUxTQMXlKWcfVLP8gwOCFVceMigkNKknisF921lJVKkPMXEBTOLQ9LQUZg9VUYYs1UAjv6ePidbQRyFs3AwvDkm23pPKhHfCakXz0s4RTQvkrNyEz8BnHeeqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+Engineering+and+Telecommunication+%28EnT-MIPT%29&rft.atitle=On+the+Maximal+Code+Length+of+Optimal+Linear+LRC+Codes+with+Availability&rft.au=Kruglik%2C+Stanislav&rft.au=Nazirkhanova%2C+Kamilla&rft.au=Frolov%2C+Alexey&rft.date=2018-11-01&rft.pub=IEEE&rft.spage=54&rft.epage=57&rft_id=info:doi/10.1109%2FEnT-MIPT.2018.00018&rft.externalDocID=8757437