FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors

Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes use of the geometry prior, i.e., facial landmark...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2492 - 2501
Main Authors Chen, Yu, Tai, Ying, Liu, Xiaoming, Shen, Chunhua, Yang, Jian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text
ISSN1063-6919
DOI10.1109/CVPR.2018.00264

Cover

Loading…
Abstract Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To generate realistic faces, we also propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Further, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively.
AbstractList Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To generate realistic faces, we also propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Further, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively.
Author Liu, Xiaoming
Shen, Chunhua
Chen, Yu
Yang, Jian
Tai, Ying
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
– sequence: 2
  givenname: Ying
  surname: Tai
  fullname: Tai, Ying
– sequence: 3
  givenname: Xiaoming
  surname: Liu
  fullname: Liu, Xiaoming
– sequence: 4
  givenname: Chunhua
  surname: Shen
  fullname: Shen, Chunhua
– sequence: 5
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
BookMark eNotjr1OwzAYRQ0CiVIyM7D4BRw-_9tsKDSAFEGVAmvlJA4YFadyUiHenlYwneEeXZ1zdBKH6BG6pJBTCva6eFvWOQNqcgCmxBHKrDZUcqOUYGCP0YyC4kRZas9QNo6fcPAMN0LO0F25qp_8dIMXsSPTQPbAlXcphviOS9d6vNptfSK1H4fNbgpDxN9h-jhMwW3wMoUhjRfotHeb0Wf_nKPXcvFSPJDq-f6xuK1IoFpORPQNZwoMA8lAm7b1thVO28Z0AEK1nHHYh3eikdIqYXvdmYbLhjnXKyOBz9HV32_w3q-3KXy59LM2UhuuGP8FJhhKug
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00264
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 2501
ExternalDocumentID 8578362
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-4fb326082052078cce9c4a79b8d0046c3230815d4b559649f7d8b35b2aaf68503
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-4fb326082052078cce9c4a79b8d0046c3230815d4b559649f7d8b35b2aaf68503
PageCount 10
ParticipantIDs ieee_primary_8578362
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5656793
Snippet Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We...
SourceID ieee
SourceType Publisher
StartPage 2492
SubjectTerms Decoding
Estimation
Face
Feature extraction
Heating systems
Image resolution
Shape
Title FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
URI https://ieeexplore.ieee.org/document/8578362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP7ODh4tDLZurVdkISYQAmK4kf40xGQjsF38631vm2iMB0_bumxt2m7ve6_f-0rIvfWFjZmx1DdRQEOp-1QqGVPHnZOl4hvD3OHJNBovw-cVWzXIwyEXxlpbks9sF0_LtXyT6QJDZT3OMOcAfrhH4LhVuVqHeMog4gGvV8jwOgDPJhK8VvPp-6I3fJ3NkctVkidRYeDHdiqlNUlaZPLVjopE8t4tctXVH78kGv_b0BPS-c7b82YHi3RKGjY9I60aaHr1Z7xvk6dkMZ_a_NEbpYbmGYWDVwutvnmJhLcsiq3dUYztVzPTw3gt3oLpClVsst2-Q5bJ6GU4pvV2CnQDGCGnoVOA1dDkswEAA62t0KGMheIGvWQdgDfC-8yECryMKBQuNlwFTA2kdBFnfnBOmmmW2gviAcrRHJ6BQhH6kinfcZSGc1oyo4S8JG3slPW2UsxY1_1x9XfxNTnGYakIWDekme8KewumPld35Rh_AhQApaI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSECsZvd_BoYbB1a70iCyoQwofhRvpJiMlGYLv419u3TTTGg6dtXbY2bbf3e6_v9ytC99plOiRKY1cFHva5bGMueIgNNYbnim8EuMPDUdCf-y8Lsqighz0XRmudJ5_pJpzma_kqkRmEylqUAOfA_nAPCJBxC7bWPqLSCahHyzUyuPasbxMwWur5tF3W6r6NJ5DNladPgsbAjw1VcnsS1dDwqyVFGsl7M0tFU378Emn8b1OPUeObueeM9zbpBFV0fIpqJdR0yg95V0dP0XQy0umj04sVThNsD04ptbpyIm7fMs02eoshul_MTQcitnDLTlhbxTrZ7hpoHvVm3T4uN1TAa4sSUuwbYdEaGH3SsdBASs2kz0MmqAI_WXrWH6Ftonxh_YzAZyZUVHhEdDg3ASWud4aqcRLrc-RYnCOpfcYWMt_lRLiGgjickZwowfgFqkOnLDeFZsay7I_Lv4vv0GF_NhwsB8-j1yt0BENUpGNdo2q6zfSNNfypuM3H-xPsB6jq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=FSRNet%3A+End-to-End+Learning+Face+Super-Resolution+with+Facial+Priors&rft.au=Chen%2C+Yu&rft.au=Tai%2C+Ying&rft.au=Liu%2C+Xiaoming&rft.au=Shen%2C+Chunhua&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2492&rft.epage=2501&rft_id=info:doi/10.1109%2FCVPR.2018.00264&rft.externalDocID=8578362