FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes use of the geometry prior, i.e., facial landmark...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2492 - 2501 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1063-6919 |
DOI | 10.1109/CVPR.2018.00264 |
Cover
Loading…
Abstract | Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To generate realistic faces, we also propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Further, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. |
---|---|
AbstractList | Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We present a novel deep end-to-end trainable Face Super-Resolution Network (FSRNet), which makes use of the geometry prior, i.e., facial landmark heatmaps and parsing maps, to super-resolve very low-resolution (LR) face images without well-aligned requirement. Specifically, we first construct a coarse SR network to recover a coarse high-resolution (HR) image. Then, the coarse HR image is sent to two branches: a fine SR encoder and a prior information estimation network, which extracts the image features, and estimates landmark heatmaps/parsing maps respectively. Both image features and prior information are sent to a fine SR decoder to recover the HR image. To generate realistic faces, we also propose the Face Super-Resolution Generative Adversarial Network (FSRGAN) to incorporate the adversarial loss into FSRNet. Further, we introduce two related tasks, face alignment and parsing, as the new evaluation metrics for face SR, which address the inconsistency of classic metrics w.r.t. visual perception. Extensive experiments show that FSRNet and FSRGAN significantly outperforms state of the arts for very LR face SR, both quantitatively and qualitatively. |
Author | Liu, Xiaoming Shen, Chunhua Chen, Yu Yang, Jian Tai, Ying |
Author_xml | – sequence: 1 givenname: Yu surname: Chen fullname: Chen, Yu – sequence: 2 givenname: Ying surname: Tai fullname: Tai, Ying – sequence: 3 givenname: Xiaoming surname: Liu fullname: Liu, Xiaoming – sequence: 4 givenname: Chunhua surname: Shen fullname: Shen, Chunhua – sequence: 5 givenname: Jian surname: Yang fullname: Yang, Jian |
BookMark | eNotjr1OwzAYRQ0CiVIyM7D4BRw-_9tsKDSAFEGVAmvlJA4YFadyUiHenlYwneEeXZ1zdBKH6BG6pJBTCva6eFvWOQNqcgCmxBHKrDZUcqOUYGCP0YyC4kRZas9QNo6fcPAMN0LO0F25qp_8dIMXsSPTQPbAlXcphviOS9d6vNptfSK1H4fNbgpDxN9h-jhMwW3wMoUhjRfotHeb0Wf_nKPXcvFSPJDq-f6xuK1IoFpORPQNZwoMA8lAm7b1thVO28Z0AEK1nHHYh3eikdIqYXvdmYbLhjnXKyOBz9HV32_w3q-3KXy59LM2UhuuGP8FJhhKug |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2018.00264 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538664209 1538664208 |
EISSN | 1063-6919 |
EndPage | 2501 |
ExternalDocumentID | 8578362 |
Genre | orig-research |
GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-4fb326082052078cce9c4a79b8d0046c3230815d4b559649f7d8b35b2aaf68503 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:52:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-4fb326082052078cce9c4a79b8d0046c3230815d4b559649f7d8b35b2aaf68503 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8578362 |
PublicationCentury | 2000 |
PublicationDate | 2018-Jun |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683845 ssj0003211698 |
Score | 2.5656793 |
Snippet | Face Super-Resolution (SR) is a domain-specific superresolution problem. The facial prior knowledge can be leveraged to better super-resolve face images. We... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2492 |
SubjectTerms | Decoding Estimation Face Feature extraction Heating systems Image resolution Shape |
Title | FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors |
URI | https://ieeexplore.ieee.org/document/8578362 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG6QkydUMP7ODh4tDLZurVdkISYQAmK4kf40xGQjsF38631vm2iMB0_bumxt2m7ve6_f-0rIvfWFjZmx1DdRQEOp-1QqGVPHnZOl4hvD3OHJNBovw-cVWzXIwyEXxlpbks9sF0_LtXyT6QJDZT3OMOcAfrhH4LhVuVqHeMog4gGvV8jwOgDPJhK8VvPp-6I3fJ3NkctVkidRYeDHdiqlNUlaZPLVjopE8t4tctXVH78kGv_b0BPS-c7b82YHi3RKGjY9I60aaHr1Z7xvk6dkMZ_a_NEbpYbmGYWDVwutvnmJhLcsiq3dUYztVzPTw3gt3oLpClVsst2-Q5bJ6GU4pvV2CnQDGCGnoVOA1dDkswEAA62t0KGMheIGvWQdgDfC-8yECryMKBQuNlwFTA2kdBFnfnBOmmmW2gviAcrRHJ6BQhH6kinfcZSGc1oyo4S8JG3slPW2UsxY1_1x9XfxNTnGYakIWDekme8KewumPld35Rh_AhQApaI |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8IHvSECsZvd_BoYbB1a70iCyoQwofhRvpJiMlGYLv419u3TTTGg6dtXbY2bbf3e6_v9ytC99plOiRKY1cFHva5bGMueIgNNYbnim8EuMPDUdCf-y8Lsqighz0XRmudJ5_pJpzma_kqkRmEylqUAOfA_nAPCJBxC7bWPqLSCahHyzUyuPasbxMwWur5tF3W6r6NJ5DNladPgsbAjw1VcnsS1dDwqyVFGsl7M0tFU378Emn8b1OPUeObueeM9zbpBFV0fIpqJdR0yg95V0dP0XQy0umj04sVThNsD04ptbpyIm7fMs02eoshul_MTQcitnDLTlhbxTrZ7hpoHvVm3T4uN1TAa4sSUuwbYdEaGH3SsdBASs2kz0MmqAI_WXrWH6Ftonxh_YzAZyZUVHhEdDg3ASWud4aqcRLrc-RYnCOpfcYWMt_lRLiGgjickZwowfgFqkOnLDeFZsay7I_Lv4vv0GF_NhwsB8-j1yt0BENUpGNdo2q6zfSNNfypuM3H-xPsB6jq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=FSRNet%3A+End-to-End+Learning+Face+Super-Resolution+with+Facial+Priors&rft.au=Chen%2C+Yu&rft.au=Tai%2C+Ying&rft.au=Liu%2C+Xiaoming&rft.au=Shen%2C+Chunhua&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=2492&rft.epage=2501&rft_id=info:doi/10.1109%2FCVPR.2018.00264&rft.externalDocID=8578362 |