Q learning algorithm based UAV path learning and obstacle avoidence approach
As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance are becoming more and more important. Reinforcement learning (RL) is a well-known technique in the domain of Machine Learning (ML), which int...
Saved in:
Published in | Chinese Control Conference pp. 3397 - 3402 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, CAA
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance are becoming more and more important. Reinforcement learning (RL) is a well-known technique in the domain of Machine Learning (ML), which interacts with the environment and learning the knowledge without the requirement of massive priori training samples. Thus it is attractive to implement the idea of RL to support UAV tasks in unknown environments. This paper adopts an Adaptive and Random Exploration approach (ARE) to accomplish both the tasks of UAV navigation and obstacle avoidance. Search mechanisms will be conducted to guide the UAV escape to a proper path. Simulations on different scenarios show that our approach can effectively guide UAVs to reach their targets in quite rational paths. |
---|---|
AbstractList | As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance are becoming more and more important. Reinforcement learning (RL) is a well-known technique in the domain of Machine Learning (ML), which interacts with the environment and learning the knowledge without the requirement of massive priori training samples. Thus it is attractive to implement the idea of RL to support UAV tasks in unknown environments. This paper adopts an Adaptive and Random Exploration approach (ARE) to accomplish both the tasks of UAV navigation and obstacle avoidance. Search mechanisms will be conducted to guide the UAV escape to a proper path. Simulations on different scenarios show that our approach can effectively guide UAVs to reach their targets in quite rational paths. |
Author | Zhao Yijing Liu Yang Zhang Xiaoyi Zheng Zheng |
Author_xml | – sequence: 1 surname: Zhao Yijing fullname: Zhao Yijing email: yjzhao@buaa.edu.cn organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China – sequence: 2 surname: Zheng Zheng fullname: Zheng Zheng organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China – sequence: 3 surname: Zhang Xiaoyi fullname: Zhang Xiaoyi organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China – sequence: 4 surname: Liu Yang fullname: Liu Yang organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China |
BookMark | eNpNj81KxDAURqMoOB19gtnkBTomvW1-lkPxDwoiOG6Hm-R2GumkpS2Cb6_gLFx9Z3E48GXsKg2JGNtIsS3ASntfd7Gut4WQemtEoY0pL1hmjZGVAgtwyVbSQplLrcwNy-b5UwglrIQVa954TzilmI4c--MwxaU7cYczBb7fffARl-6fkQIf3Lyg74nj1xADJf9L4zgN6Ltbdt1iP9Pdedds__jwXj_nzevTS71r8ih1teRli5WuCgQNNoB0JWgfWqPIQ1m2rdEK0IYA4DyqynhyAlrpnNXeWAKCNdv8dSMRHcYpnnD6Ppyfww_mvFAW |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/ChiCC.2017.8027884 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9881563933 9789881563934 |
EISSN | 1934-1768 |
EndPage | 3402 |
ExternalDocumentID | 8027884 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-4fa5752a3739d31b437cdf86ec344ff8763a9dd33bca658ceb03f1bb97c89e3e3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:23:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-4fa5752a3739d31b437cdf86ec344ff8763a9dd33bca658ceb03f1bb97c89e3e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8027884 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | Chinese Control Conference |
PublicationTitleAbbrev | ChiCC |
PublicationYear | 2017 |
Publisher | Technical Committee on Control Theory, CAA |
Publisher_xml | – name: Technical Committee on Control Theory, CAA |
SSID | ssj0060913 |
Score | 2.3678005 |
Snippet | As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3397 |
SubjectTerms | Artificial intelligence Collision avoidance History neural network Neural networks Path planning q learning Real-time systems trap-escape strategy UAV obstacle avoidance Unmanned aerial vehicles |
Title | Q learning algorithm based UAV path learning and obstacle avoidence approach |
URI | https://ieeexplore.ieee.org/document/8027884 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcf20568ccm_iYHj7Zrl9gkRymOISoKTnYb-bkNXSuj8-Bfb9J2c4oHTw0lJSWv5PvSvPd5ABdaWx4ZlTgL0CggOEkCJ0M0oIoaxRLjNiUl7fMhGQzJ7ehq1IDLdS6MMaYMPjOhb5Zn-TpXS_-rrMv8MRkjTWi6S5WrtVp1E8-3rKhCPcxj3k2nszT1oVs0rB_7UT-llI_-DtyvBq6iRl7DZSFD9fmLyfjfN9uFzneiHnpcS9AeNEy2D9sbjME23D2hujLEBIm3Sb6YFdM58uKl0fD6BfmSxBs9Mo1y6TxG9zUh8ZFXJUfRijzegWH_5jkdBHUJhWDm_IIiIFY4f6wnMMVc41gSTJW2zgYKE2Ktx9EJrjXGUgnniygjI2xjKTlVjBts8AG0sjwzh4CEh_1FnHkIndtTuzWeKMGkZUwIieP4CNp-XsbvFSVjXE_J8d-3T2DL26YKfD2FVrFYmjMn74U8L-36Bd30pXo |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT8JAEMYniAf14gOMb_fg0ZaWXbrdo2kkqEA0AcON7KtA1NaQ4sG_3t22IBoP3pqmTZudZr_Z7szvA7hSKmaeloGJAPUcgoPAMTJEHSqplmGgzaIkp332g86Q3I9aowpcr3phtNZ58Zl27WG-l69SubC_yhqh3SYLyQZsGt1v-UW31nLeDSzhsuAKNTHzWSOazqLIFm9Rt7zxh4NKLiDtXegtH13Ujby4i0y48vMXlfG_77YH9e9WPfS4EqF9qOjkAHbWKIM16D6h0htigvjrJJ3PsukbsvKl0PDmGVlT4rUrEoVSYXJG8z0h_pEWpqNoyR6vw7B9O4g6Tmmi4MxMZpA5JOYmI2tyTDFT2BcEU6liEwWJCYljC6TjTCmMheQmG5FaeDj2hWBUhkxjjQ-hmqSJPgLELe7PY6HF0JlVtZnlieShiMOQc4F9_xhqdlzG7wUnY1wOycnfpy9hqzPodcfdu_7DKWzbOBVlsGdQzeYLfW7EPhMXeYy_AK-XqMM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Q+learning+algorithm+based+UAV+path+learning+and+obstacle+avoidence+approach&rft.au=Zhao+Yijing&rft.au=Zheng+Zheng&rft.au=Zhang+Xiaoyi&rft.au=Liu+Yang&rft.date=2017-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+CAA&rft.eissn=1934-1768&rft.spage=3397&rft.epage=3402&rft_id=info:doi/10.23919%2FChiCC.2017.8027884&rft.externalDocID=8027884 |