Q learning algorithm based UAV path learning and obstacle avoidence approach

As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance are becoming more and more important. Reinforcement learning (RL) is a well-known technique in the domain of Machine Learning (ML), which int...

Full description

Saved in:
Bibliographic Details
Published inChinese Control Conference pp. 3397 - 3402
Main Authors Zhao Yijing, Zheng Zheng, Zhang Xiaoyi, Liu Yang
Format Conference Proceeding
LanguageEnglish
Published Technical Committee on Control Theory, CAA 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance are becoming more and more important. Reinforcement learning (RL) is a well-known technique in the domain of Machine Learning (ML), which interacts with the environment and learning the knowledge without the requirement of massive priori training samples. Thus it is attractive to implement the idea of RL to support UAV tasks in unknown environments. This paper adopts an Adaptive and Random Exploration approach (ARE) to accomplish both the tasks of UAV navigation and obstacle avoidance. Search mechanisms will be conducted to guide the UAV escape to a proper path. Simulations on different scenarios show that our approach can effectively guide UAVs to reach their targets in quite rational paths.
AbstractList As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance are becoming more and more important. Reinforcement learning (RL) is a well-known technique in the domain of Machine Learning (ML), which interacts with the environment and learning the knowledge without the requirement of massive priori training samples. Thus it is attractive to implement the idea of RL to support UAV tasks in unknown environments. This paper adopts an Adaptive and Random Exploration approach (ARE) to accomplish both the tasks of UAV navigation and obstacle avoidance. Search mechanisms will be conducted to guide the UAV escape to a proper path. Simulations on different scenarios show that our approach can effectively guide UAVs to reach their targets in quite rational paths.
Author Zhao Yijing
Liu Yang
Zhang Xiaoyi
Zheng Zheng
Author_xml – sequence: 1
  surname: Zhao Yijing
  fullname: Zhao Yijing
  email: yjzhao@buaa.edu.cn
  organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
– sequence: 2
  surname: Zheng Zheng
  fullname: Zheng Zheng
  organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
– sequence: 3
  surname: Zhang Xiaoyi
  fullname: Zhang Xiaoyi
  organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
– sequence: 4
  surname: Liu Yang
  fullname: Liu Yang
  organization: Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
BookMark eNpNj81KxDAURqMoOB19gtnkBTomvW1-lkPxDwoiOG6Hm-R2GumkpS2Cb6_gLFx9Z3E48GXsKg2JGNtIsS3ASntfd7Gut4WQemtEoY0pL1hmjZGVAgtwyVbSQplLrcwNy-b5UwglrIQVa954TzilmI4c--MwxaU7cYczBb7fffARl-6fkQIf3Lyg74nj1xADJf9L4zgN6Ltbdt1iP9Pdedds__jwXj_nzevTS71r8ih1teRli5WuCgQNNoB0JWgfWqPIQ1m2rdEK0IYA4DyqynhyAlrpnNXeWAKCNdv8dSMRHcYpnnD6Ppyfww_mvFAW
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/ChiCC.2017.8027884
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9881563933
9789881563934
EISSN 1934-1768
EndPage 3402
ExternalDocumentID 8027884
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-4fa5752a3739d31b437cdf86ec344ff8763a9dd33bca658ceb03f1bb97c89e3e3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:23:31 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-4fa5752a3739d31b437cdf86ec344ff8763a9dd33bca658ceb03f1bb97c89e3e3
PageCount 6
ParticipantIDs ieee_primary_8027884
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle Chinese Control Conference
PublicationTitleAbbrev ChiCC
PublicationYear 2017
Publisher Technical Committee on Control Theory, CAA
Publisher_xml – name: Technical Committee on Control Theory, CAA
SSID ssj0060913
Score 2.3678005
Snippet As Unmanned Aerial Vehicle (UAV) having been applied in more complex and adverse environments, the requirements of automatic techniques for obstacle avoidance...
SourceID ieee
SourceType Publisher
StartPage 3397
SubjectTerms Artificial intelligence
Collision avoidance
History
neural network
Neural networks
Path planning
q learning
Real-time systems
trap-escape strategy
UAV obstacle avoidance
Unmanned aerial vehicles
Title Q learning algorithm based UAV path learning and obstacle avoidence approach
URI https://ieeexplore.ieee.org/document/8027884
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMcf20568ccm_iYHj7Zrl9gkRymOISoKTnYb-bkNXSuj8-Bfb9J2c4oHTw0lJSWv5PvSvPd5ABdaWx4ZlTgL0CggOEkCJ0M0oIoaxRLjNiUl7fMhGQzJ7ehq1IDLdS6MMaYMPjOhb5Zn-TpXS_-rrMv8MRkjTWi6S5WrtVp1E8-3rKhCPcxj3k2nszT1oVs0rB_7UT-llI_-DtyvBq6iRl7DZSFD9fmLyfjfN9uFzneiHnpcS9AeNEy2D9sbjME23D2hujLEBIm3Sb6YFdM58uKl0fD6BfmSxBs9Mo1y6TxG9zUh8ZFXJUfRijzegWH_5jkdBHUJhWDm_IIiIFY4f6wnMMVc41gSTJW2zgYKE2Ktx9EJrjXGUgnniygjI2xjKTlVjBts8AG0sjwzh4CEh_1FnHkIndtTuzWeKMGkZUwIieP4CNp-XsbvFSVjXE_J8d-3T2DL26YKfD2FVrFYmjMn74U8L-36Bd30pXo
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3LT8JAEMYniAf14gOMb_fg0ZaWXbrdo2kkqEA0AcON7KtA1NaQ4sG_3t22IBoP3pqmTZudZr_Z7szvA7hSKmaeloGJAPUcgoPAMTJEHSqplmGgzaIkp332g86Q3I9aowpcr3phtNZ58Zl27WG-l69SubC_yhqh3SYLyQZsGt1v-UW31nLeDSzhsuAKNTHzWSOazqLIFm9Rt7zxh4NKLiDtXegtH13Ujby4i0y48vMXlfG_77YH9e9WPfS4EqF9qOjkAHbWKIM16D6h0htigvjrJJ3PsukbsvKl0PDmGVlT4rUrEoVSYXJG8z0h_pEWpqNoyR6vw7B9O4g6Tmmi4MxMZpA5JOYmI2tyTDFT2BcEU6liEwWJCYljC6TjTCmMheQmG5FaeDj2hWBUhkxjjQ-hmqSJPgLELe7PY6HF0JlVtZnlieShiMOQc4F9_xhqdlzG7wUnY1wOycnfpy9hqzPodcfdu_7DKWzbOBVlsGdQzeYLfW7EPhMXeYy_AK-XqMM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Control+Conference&rft.atitle=Q+learning+algorithm+based+UAV+path+learning+and+obstacle+avoidence+approach&rft.au=Zhao+Yijing&rft.au=Zheng+Zheng&rft.au=Zhang+Xiaoyi&rft.au=Liu+Yang&rft.date=2017-07-01&rft.pub=Technical+Committee+on+Control+Theory%2C+CAA&rft.eissn=1934-1768&rft.spage=3397&rft.epage=3402&rft_id=info:doi/10.23919%2FChiCC.2017.8027884&rft.externalDocID=8027884