The step size impact on the computational cost of spiking neuron simulation
Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a non-linear system of ordinary differential equations. Because these systems are hard to solve analytically, they must be solved using a numeric...
Saved in:
Published in | 2017 Computing Conference pp. 722 - 728 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a non-linear system of ordinary differential equations. Because these systems are hard to solve analytically, they must be solved using a numerical method through a discrete sequence of time steps. The step length is a factor affecting both the accuracy and computational cost of spiking neuron simulation. It is known the step size implications on the accuracy for some spiking neurons. However, it is unknown in which way the step size impacts the computational cost. We found that the computational cost as a function of the step length follows a power-law distribution. We reviewed the Leaky Integrate-and-Fire, Izhikevich, and Hodgkin-Huxley spiking neurons. Additionally, it was found that, with any step size, simulating the cerebral cortex in a sequential processing computer is prohibitive. |
---|---|
AbstractList | Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a non-linear system of ordinary differential equations. Because these systems are hard to solve analytically, they must be solved using a numerical method through a discrete sequence of time steps. The step length is a factor affecting both the accuracy and computational cost of spiking neuron simulation. It is known the step size implications on the accuracy for some spiking neurons. However, it is unknown in which way the step size impacts the computational cost. We found that the computational cost as a function of the step length follows a power-law distribution. We reviewed the Leaky Integrate-and-Fire, Izhikevich, and Hodgkin-Huxley spiking neurons. Additionally, it was found that, with any step size, simulating the cerebral cortex in a sequential processing computer is prohibitive. |
Author | Sossa, Humberto Santiago-Montero, Raul Valadez-Godinez, Sergio |
Author_xml | – sequence: 1 givenname: Sergio surname: Valadez-Godinez fullname: Valadez-Godinez, Sergio email: svaladezg@gmail.com organization: Lab. de Robot. y Mecatronica, Inst. Politec. Nac., Mexico City, Mexico – sequence: 2 givenname: Humberto surname: Sossa fullname: Sossa, Humberto email: hsossa@cic.ipn.mx organization: Lab. de Robot. y Mecatronica, Inst. Politec. Nac., Mexico City, Mexico – sequence: 3 givenname: Raul surname: Santiago-Montero fullname: Santiago-Montero, Raul email: rsantiago66@gmail.com organization: Div. de Estudios de Posgrado e Investig., Inst. Tecnol. de Leon, Guanajuato, Mexico |
BookMark | eNotj0FLxDAUhCMoqGvvgpf8gdaXNEmT47Kou7jgwfW8pOmrRtu0NOlBf71F9zTMzMfAXJPzMAQk5JZBwRiY-9f1ruDAqkJzyVmlzkhmKs0kGJBClPKSZDF-AgAzSpeKXZHnwwfSmHCk0f8g9f1oXaJDoGnJ3dCPc7LJD8F2i4tL09I4-i8f3mnAeVrA6Pu5-2NuyEVru4jZSVfk7fHhsNnm-5en3Wa9zz2rZMoFNlwbx3QLTqBCUYGUNa-5MyBkrZxrEaA2mnPFGoHAleJcay6sVWiackXu_nc9Ih7Hyfd2-j6eLpe_9etNxg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SAI.2017.8252176 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9781509054435 150905443X |
EndPage | 728 |
ExternalDocumentID | 8252176 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-4ed289c18f0c4e6e47055b2b2c9045b6ccfe00b982261d4e0266228824aa6e9d3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:15 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-4ed289c18f0c4e6e47055b2b2c9045b6ccfe00b982261d4e0266228824aa6e9d3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_8252176 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | 2017 Computing Conference |
PublicationTitleAbbrev | SAI |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001968361 |
Score | 1.711484 |
Snippet | Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 722 |
SubjectTerms | Brain modeling Cerebral cortex Computational efficiency Computational modeling Differential equation Differential equations Mathematical model Neurons Numerical models Power-law distribution Runge-Kutta Simulation Spiking neuron Time step |
Title | The step size impact on the computational cost of spiking neuron simulation |
URI | https://ieeexplore.ieee.org/document/8252176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjzast1uF_ZojAQ1GBMl4Ua622lCjIVIufDrnd0WiMaDt35tutlpM29m570BuIkMRrEhC7j8QiDjFAOjpQoIGScadW65Z6WNX9RoIp-mybQBtzsuDCL64jMM3aHfy88Wdu1SZT2KZghBqyY0-1pXXK19PkWrQayi7U4k1723u0dXutUP62E_-qd49zFsw3j74qpq5CNclya0m1-ajP-d2SF090Q99rpzQUfQwOIY2ttODaz-cTvwTF8DI3su2Wq-QVZRI9miYAT_mPWP10lBOlvRnZytlnOXRWde8LKgcZ91o68uTIYP7_ejoG6jEMwJG5SBxIyiKhsNcm4lKpROQMcII6wmPGeUtTlybpyQn4oyiRSVKSEIecs0Vaiz-ARaxaLAU2A8TyIrtSScEMsUhRaJU_fOucC0ryM8g45bm9myUsqY1cty_vflCzhw9qmKXy-hVX6t8YpcfGmuvW2_ASnEplQ |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BoS7fdLuzRGAnIIyZCwo10t9OEGAuRcuHXO9sWiMaDt7423ey0mW9m5_sG4IFr5IEmC9j8giOCCB2thHQIGYcKVWK8nJU2HMnuRLxOw2kFHndcGETMi8_QtYf5Xn68MGubKmtSNEMIWh7AYWhxRcHW2mdUlGwHkm_3Ij3VfH_q2eKtllsO_NFBJXcgnRoMt68u6kY-3HWmXbP5pcr437mdQGNP1WNvOyd0ChVMz6C27dXAyl-3Dn36HhhZdMlW8w2yghzJFikjAMhM_niZFqSzFd1J2Go5t3l0lktepjTus2z11YBJ52X83HXKRgrOnNBB5giMKa4yvJ14RqBEYSV0tK99owjRaWlMgp6nrZSf5LFAisuk7xP2FlEkUcXBOVTTRYoXwLwk5EYoQUghEBH6yg-tvnfi-Ri1FMdLqNu1mS0LrYxZuSxXf1--h6PueDiYDXqj_jUcW1sVpbA3UM2-1nhLDj_Td7mdvwEOtKmh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Computing+Conference&rft.atitle=The+step+size+impact+on+the+computational+cost+of+spiking+neuron+simulation&rft.au=Valadez-Godinez%2C+Sergio&rft.au=Sossa%2C+Humberto&rft.au=Santiago-Montero%2C+Raul&rft.date=2017-07-01&rft.pub=IEEE&rft.spage=722&rft.epage=728&rft_id=info:doi/10.1109%2FSAI.2017.8252176&rft.externalDocID=8252176 |