The step size impact on the computational cost of spiking neuron simulation

Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a non-linear system of ordinary differential equations. Because these systems are hard to solve analytically, they must be solved using a numeric...

Full description

Saved in:
Bibliographic Details
Published in2017 Computing Conference pp. 722 - 728
Main Authors Valadez-Godinez, Sergio, Sossa, Humberto, Santiago-Montero, Raul
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a non-linear system of ordinary differential equations. Because these systems are hard to solve analytically, they must be solved using a numerical method through a discrete sequence of time steps. The step length is a factor affecting both the accuracy and computational cost of spiking neuron simulation. It is known the step size implications on the accuracy for some spiking neurons. However, it is unknown in which way the step size impacts the computational cost. We found that the computational cost as a function of the step length follows a power-law distribution. We reviewed the Leaky Integrate-and-Fire, Izhikevich, and Hodgkin-Huxley spiking neurons. Additionally, it was found that, with any step size, simulating the cerebral cortex in a sequential processing computer is prohibitive.
AbstractList Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a non-linear system of ordinary differential equations. Because these systems are hard to solve analytically, they must be solved using a numerical method through a discrete sequence of time steps. The step length is a factor affecting both the accuracy and computational cost of spiking neuron simulation. It is known the step size implications on the accuracy for some spiking neurons. However, it is unknown in which way the step size impacts the computational cost. We found that the computational cost as a function of the step length follows a power-law distribution. We reviewed the Leaky Integrate-and-Fire, Izhikevich, and Hodgkin-Huxley spiking neurons. Additionally, it was found that, with any step size, simulating the cerebral cortex in a sequential processing computer is prohibitive.
Author Sossa, Humberto
Santiago-Montero, Raul
Valadez-Godinez, Sergio
Author_xml – sequence: 1
  givenname: Sergio
  surname: Valadez-Godinez
  fullname: Valadez-Godinez, Sergio
  email: svaladezg@gmail.com
  organization: Lab. de Robot. y Mecatronica, Inst. Politec. Nac., Mexico City, Mexico
– sequence: 2
  givenname: Humberto
  surname: Sossa
  fullname: Sossa, Humberto
  email: hsossa@cic.ipn.mx
  organization: Lab. de Robot. y Mecatronica, Inst. Politec. Nac., Mexico City, Mexico
– sequence: 3
  givenname: Raul
  surname: Santiago-Montero
  fullname: Santiago-Montero, Raul
  email: rsantiago66@gmail.com
  organization: Div. de Estudios de Posgrado e Investig., Inst. Tecnol. de Leon, Guanajuato, Mexico
BookMark eNotj0FLxDAUhCMoqGvvgpf8gdaXNEmT47Kou7jgwfW8pOmrRtu0NOlBf71F9zTMzMfAXJPzMAQk5JZBwRiY-9f1ruDAqkJzyVmlzkhmKs0kGJBClPKSZDF-AgAzSpeKXZHnwwfSmHCk0f8g9f1oXaJDoGnJ3dCPc7LJD8F2i4tL09I4-i8f3mnAeVrA6Pu5-2NuyEVru4jZSVfk7fHhsNnm-5en3Wa9zz2rZMoFNlwbx3QLTqBCUYGUNa-5MyBkrZxrEaA2mnPFGoHAleJcay6sVWiackXu_nc9Ih7Hyfd2-j6eLpe_9etNxg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SAI.2017.8252176
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781509054435
150905443X
EndPage 728
ExternalDocumentID 8252176
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-4ed289c18f0c4e6e47055b2b2c9045b6ccfe00b982261d4e0266228824aa6e9d3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-4ed289c18f0c4e6e47055b2b2c9045b6ccfe00b982261d4e0266228824aa6e9d3
PageCount 7
ParticipantIDs ieee_primary_8252176
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle 2017 Computing Conference
PublicationTitleAbbrev SAI
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001968361
Score 1.711484
Snippet Spiking neurons are mathematical models that simulate the generation of the electrical pulse at the neuron membrane. Most spiking neurons are expressed as a...
SourceID ieee
SourceType Publisher
StartPage 722
SubjectTerms Brain modeling
Cerebral cortex
Computational efficiency
Computational modeling
Differential equation
Differential equations
Mathematical model
Neurons
Numerical models
Power-law distribution
Runge-Kutta
Simulation
Spiking neuron
Time step
Title The step size impact on the computational cost of spiking neuron simulation
URI https://ieeexplore.ieee.org/document/8252176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjzast1uF_ZojAQ1GBMl4Ua622lCjIVIufDrnd0WiMaDt35tutlpM29m570BuIkMRrEhC7j8QiDjFAOjpQoIGScadW65Z6WNX9RoIp-mybQBtzsuDCL64jMM3aHfy88Wdu1SZT2KZghBqyY0-1pXXK19PkWrQayi7U4k1723u0dXutUP62E_-qd49zFsw3j74qpq5CNclya0m1-ajP-d2SF090Q99rpzQUfQwOIY2ttODaz-cTvwTF8DI3su2Wq-QVZRI9miYAT_mPWP10lBOlvRnZytlnOXRWde8LKgcZ91o68uTIYP7_ejoG6jEMwJG5SBxIyiKhsNcm4lKpROQMcII6wmPGeUtTlybpyQn4oyiRSVKSEIecs0Vaiz-ARaxaLAU2A8TyIrtSScEMsUhRaJU_fOucC0ryM8g45bm9myUsqY1cty_vflCzhw9qmKXy-hVX6t8YpcfGmuvW2_ASnEplQ
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BoS7fdLuzRGAnIIyZCwo10t9OEGAuRcuHXO9sWiMaDt7423ey0mW9m5_sG4IFr5IEmC9j8giOCCB2thHQIGYcKVWK8nJU2HMnuRLxOw2kFHndcGETMi8_QtYf5Xn68MGubKmtSNEMIWh7AYWhxRcHW2mdUlGwHkm_3Ij3VfH_q2eKtllsO_NFBJXcgnRoMt68u6kY-3HWmXbP5pcr437mdQGNP1WNvOyd0ChVMz6C27dXAyl-3Dn36HhhZdMlW8w2yghzJFikjAMhM_niZFqSzFd1J2Go5t3l0lktepjTus2z11YBJ52X83HXKRgrOnNBB5giMKa4yvJ14RqBEYSV0tK99owjRaWlMgp6nrZSf5LFAisuk7xP2FlEkUcXBOVTTRYoXwLwk5EYoQUghEBH6yg-tvnfi-Ri1FMdLqNu1mS0LrYxZuSxXf1--h6PueDiYDXqj_jUcW1sVpbA3UM2-1nhLDj_Td7mdvwEOtKmh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Computing+Conference&rft.atitle=The+step+size+impact+on+the+computational+cost+of+spiking+neuron+simulation&rft.au=Valadez-Godinez%2C+Sergio&rft.au=Sossa%2C+Humberto&rft.au=Santiago-Montero%2C+Raul&rft.date=2017-07-01&rft.pub=IEEE&rft.spage=722&rft.epage=728&rft_id=info:doi/10.1109%2FSAI.2017.8252176&rft.externalDocID=8252176