Machine Learning Model Updates in Edge Computing: An Optimal Stopping Theory Approach

This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time fo...

Full description

Saved in:
Bibliographic Details
Published in2019 18th International Symposium on Parallel and Distributed Computing (ISPDC) pp. 1 - 8
Main Authors Aleksandrova, Ekaterina, Anagnostopoulos, Christos, Kolomvatsos, Kostas
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text
DOI10.1109/ISPDC.2019.000-4

Cover

Loading…
Abstract This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time for minimizing the network overhead. At the same time it preserves the prediction accuracy of models based on the principles of the Optimal Stopping Theory (OST). The paper reports on a comparative analysis between the proposed approach and other policies proposed in the respective literature while providing an evaluation of the performances using linear and support vector regression models. Our evaluation process is realized over real contextual data streams to reveal the strengths and weaknesses of the proposed strategy.
AbstractList This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time for minimizing the network overhead. At the same time it preserves the prediction accuracy of models based on the principles of the Optimal Stopping Theory (OST). The paper reports on a comparative analysis between the proposed approach and other policies proposed in the respective literature while providing an evaluation of the performances using linear and support vector regression models. Our evaluation process is realized over real contextual data streams to reveal the strengths and weaknesses of the proposed strategy.
Author Kolomvatsos, Kostas
Aleksandrova, Ekaterina
Anagnostopoulos, Christos
Author_xml – sequence: 1
  givenname: Ekaterina
  surname: Aleksandrova
  fullname: Aleksandrova, Ekaterina
  organization: University of Glasgow
– sequence: 2
  givenname: Christos
  surname: Anagnostopoulos
  fullname: Anagnostopoulos, Christos
  organization: University of Glasgow
– sequence: 3
  givenname: Kostas
  surname: Kolomvatsos
  fullname: Kolomvatsos, Kostas
  organization: University of Glasgow
BookMark eNotjkFLwzAYhiPoQefugpf8gdYvTbIk3kqdOuiYsO48svTrFuiS0NXD_r0VPb3wvrwPzwO5DTEgIU8McsbAvKy2X29VXgAzOQBk4obMjdJMFZpxDUzek93aupMPSGu0Q_DhSNexxZ7uUmtHvFAf6LI9Iq3iOX2P0_5Ky0A3afRn29PtGFP6PTUnjMOVlikNcQI-krvO9hec_-eMNO_LpvrM6s3HqirrzDMlx0w41IU9uIWYnDq0tnPID04CV9qCUoC6la5grdRCGuaU4gU4O1UaBDd8Rp7_sB4R92mYnIbrXisDWiz4DwOSTN4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISPDC.2019.000-4
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728138015
1728138019
EndPage 8
ExternalDocumentID 8790846
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-4ce82abc64817feaafce3bc50378a0770e8d5c21d584591c77320ca5c2804393
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:04 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-4ce82abc64817feaafce3bc50378a0770e8d5c21d584591c77320ca5c2804393
PageCount 8
ParticipantIDs ieee_primary_8790846
PublicationCentury 2000
PublicationDate 2019-Jun
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-Jun
PublicationDecade 2010
PublicationTitle 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC)
PublicationTitleAbbrev ISPDC
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7732625
Snippet This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms communication efficiency
Computational modeling
Context modeling
Data models
Edge computing
Image edge detection
Logic gates
machine learning model updates
optimal stopping theory
Predictive models
Sensors
Title Machine Learning Model Updates in Edge Computing: An Optimal Stopping Theory Approach
URI https://ieeexplore.ieee.org/document/8790846
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV29TwIxFG-AyUkNGL_TwdFCuetdWzeCEDRBSYCEjfTjHSHiQfBY_Ott7w6MxsGtaYc2fUnfa_v7QOhO00B6XTQiExUTJhknmtmYSGOoUaEJVO5FMHyJB1P2PItmFXR_4MIAQA4-g6Zv5n_5dm12_qmsJbikLl9WUdVd3Aqu1v7nkcrW03j02PVgLa9ASQn74ZeSp4v-MRruJypQIm_NXaab5vOXBuN_V3KCGt_EPDw6pJxTVIG0jqbDHBAJuNRKXWBvcLbC042_zX_gZYp7dgG4MHBw4w-4k-JXd1a8qxUeZ2sv0bDABUsfd0qR8Qaa9HuT7oCUbglk6UqAjDADIlDaxEy0eQJKJQZCbSIacqEo5xSEjUzQtq7kiGTbcB4GLhyuS3h6bHiGauk6hXOEuQ05GCVkYiKmQqvyY4FpLoWrF2O4QHW_I_NNoYcxLzfj8u_uK3TkY1LAq65RLdvu4MYl8kzf5hH8Aucrn6c
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pSA8Zve_BooWzd2nojCAFlSAIk3EjXvSNEHETHxV9vuw2MxoO3pTus6Zv0edc-HwjdhdSR1heNyFj5hEnGScgin0itqVaudlSWRRAM_O6EPU29aQnd77QwAJCRz6BmH7O7_GilN_aorC64pAYv99C-wX0mc7XW9u6RynpvNHxsWbqW9aCkhP1ITMkAo3OEgu2ncp7Ia22ThjX9-cuF8b9zOUbVb2keHu5A5wSVIKmgSZBRIgEXbqlzbCPOlniytv_zH3iR4HY0B5xHOJj3D7iZ4BezW7ypJR6lK2vSMMe5Th83C5vxKhp32uNWlxR5CWRhmoCUMA3CUaH2mWjwGJSKNbih9qjLhaKcUxCRp51GZJoOTzY0565jCmKGhBXIuqeonKwSOEOYRy4HrYSMtceUG6lsY2Ahl8J0jD6co4pdkdk6d8SYFYtx8ffwLTrojoP-rN8bPF-iQ1ufnGx1hcrp-wauDayn4U1WzS94KKL3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+International+Symposium+on+Parallel+and+Distributed+Computing+%28ISPDC%29&rft.atitle=Machine+Learning+Model+Updates+in+Edge+Computing%3A+An+Optimal+Stopping+Theory+Approach&rft.au=Aleksandrova%2C+Ekaterina&rft.au=Anagnostopoulos%2C+Christos&rft.au=Kolomvatsos%2C+Kostas&rft.date=2019-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FISPDC.2019.000-4&rft.externalDocID=8790846