Machine Learning Model Updates in Edge Computing: An Optimal Stopping Theory Approach
This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time fo...
Saved in:
Published in | 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC) pp. 1 - 8 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ISPDC.2019.000-4 |
Cover
Loading…
Abstract | This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time for minimizing the network overhead. At the same time it preserves the prediction accuracy of models based on the principles of the Optimal Stopping Theory (OST). The paper reports on a comparative analysis between the proposed approach and other policies proposed in the respective literature while providing an evaluation of the performances using linear and support vector regression models. Our evaluation process is realized over real contextual data streams to reveal the strengths and weaknesses of the proposed strategy. |
---|---|
AbstractList | This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in the contextual data distribution. The proposed model focuses on updates scheduling and takes into consideration the optimal decision time for minimizing the network overhead. At the same time it preserves the prediction accuracy of models based on the principles of the Optimal Stopping Theory (OST). The paper reports on a comparative analysis between the proposed approach and other policies proposed in the respective literature while providing an evaluation of the performances using linear and support vector regression models. Our evaluation process is realized over real contextual data streams to reveal the strengths and weaknesses of the proposed strategy. |
Author | Kolomvatsos, Kostas Aleksandrova, Ekaterina Anagnostopoulos, Christos |
Author_xml | – sequence: 1 givenname: Ekaterina surname: Aleksandrova fullname: Aleksandrova, Ekaterina organization: University of Glasgow – sequence: 2 givenname: Christos surname: Anagnostopoulos fullname: Anagnostopoulos, Christos organization: University of Glasgow – sequence: 3 givenname: Kostas surname: Kolomvatsos fullname: Kolomvatsos, Kostas organization: University of Glasgow |
BookMark | eNotjkFLwzAYhiPoQefugpf8gdYvTbIk3kqdOuiYsO48svTrFuiS0NXD_r0VPb3wvrwPzwO5DTEgIU8McsbAvKy2X29VXgAzOQBk4obMjdJMFZpxDUzek93aupMPSGu0Q_DhSNexxZ7uUmtHvFAf6LI9Iq3iOX2P0_5Ky0A3afRn29PtGFP6PTUnjMOVlikNcQI-krvO9hec_-eMNO_LpvrM6s3HqirrzDMlx0w41IU9uIWYnDq0tnPID04CV9qCUoC6la5grdRCGuaU4gU4O1UaBDd8Rp7_sB4R92mYnIbrXisDWiz4DwOSTN4 |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISPDC.2019.000-4 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728138015 1728138019 |
EndPage | 8 |
ExternalDocumentID | 8790846 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-4ce82abc64817feaafce3bc50378a0770e8d5c21d584591c77320ca5c2804393 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:04 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-4ce82abc64817feaafce3bc50378a0770e8d5c21d584591c77320ca5c2804393 |
PageCount | 8 |
ParticipantIDs | ieee_primary_8790846 |
PublicationCentury | 2000 |
PublicationDate | 2019-Jun |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-Jun |
PublicationDecade | 2010 |
PublicationTitle | 2019 18th International Symposium on Parallel and Distributed Computing (ISPDC) |
PublicationTitleAbbrev | ISPDC |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7732625 |
Snippet | This work studies a sequential decision making methodology of when to update machine learning models in Edge Computing environments given underlying changes in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | communication efficiency Computational modeling Context modeling Data models Edge computing Image edge detection Logic gates machine learning model updates optimal stopping theory Predictive models Sensors |
Title | Machine Learning Model Updates in Edge Computing: An Optimal Stopping Theory Approach |
URI | https://ieeexplore.ieee.org/document/8790846 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV29TwIxFG-AyUkNGL_TwdFCuetdWzeCEDRBSYCEjfTjHSHiQfBY_Ott7w6MxsGtaYc2fUnfa_v7QOhO00B6XTQiExUTJhknmtmYSGOoUaEJVO5FMHyJB1P2PItmFXR_4MIAQA4-g6Zv5n_5dm12_qmsJbikLl9WUdVd3Aqu1v7nkcrW03j02PVgLa9ASQn74ZeSp4v-MRruJypQIm_NXaab5vOXBuN_V3KCGt_EPDw6pJxTVIG0jqbDHBAJuNRKXWBvcLbC042_zX_gZYp7dgG4MHBw4w-4k-JXd1a8qxUeZ2sv0bDABUsfd0qR8Qaa9HuT7oCUbglk6UqAjDADIlDaxEy0eQJKJQZCbSIacqEo5xSEjUzQtq7kiGTbcB4GLhyuS3h6bHiGauk6hXOEuQ05GCVkYiKmQqvyY4FpLoWrF2O4QHW_I_NNoYcxLzfj8u_uK3TkY1LAq65RLdvu4MYl8kzf5hH8Aucrn6c |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4QD3pSA8Zve_BooWzd2nojCAFlSAIk3EjXvSNEHETHxV9vuw2MxoO3pTus6Zv0edc-HwjdhdSR1heNyFj5hEnGScgin0itqVaudlSWRRAM_O6EPU29aQnd77QwAJCRz6BmH7O7_GilN_aorC64pAYv99C-wX0mc7XW9u6RynpvNHxsWbqW9aCkhP1ITMkAo3OEgu2ncp7Ia22ThjX9-cuF8b9zOUbVb2keHu5A5wSVIKmgSZBRIgEXbqlzbCPOlniytv_zH3iR4HY0B5xHOJj3D7iZ4BezW7ypJR6lK2vSMMe5Th83C5vxKhp32uNWlxR5CWRhmoCUMA3CUaH2mWjwGJSKNbih9qjLhaKcUxCRp51GZJoOTzY0565jCmKGhBXIuqeonKwSOEOYRy4HrYSMtceUG6lsY2Ahl8J0jD6co4pdkdk6d8SYFYtx8ffwLTrojoP-rN8bPF-iQ1ufnGx1hcrp-wauDayn4U1WzS94KKL3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+18th+International+Symposium+on+Parallel+and+Distributed+Computing+%28ISPDC%29&rft.atitle=Machine+Learning+Model+Updates+in+Edge+Computing%3A+An+Optimal+Stopping+Theory+Approach&rft.au=Aleksandrova%2C+Ekaterina&rft.au=Anagnostopoulos%2C+Christos&rft.au=Kolomvatsos%2C+Kostas&rft.date=2019-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FISPDC.2019.000-4&rft.externalDocID=8790846 |