Online Video Deblurring via Dynamic Temporal Blending Network
State-of-the-art video deblurring methods are capable of removing non-uniform blur caused by unwanted camera shake and/or object motion in dynamic scenes. However, most existing methods are based on batch processing and thus need access to all recorded frames, rendering them computationally demandin...
Saved in:
Published in | Proceedings / IEEE International Conference on Computer Vision pp. 4058 - 4067 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2380-7504 |
DOI | 10.1109/ICCV.2017.435 |
Cover
Loading…
Abstract | State-of-the-art video deblurring methods are capable of removing non-uniform blur caused by unwanted camera shake and/or object motion in dynamic scenes. However, most existing methods are based on batch processing and thus need access to all recorded frames, rendering them computationally demanding and time-consuming and thus limiting their practical use. In contrast, we propose an online (sequential) video deblurring method based on a spatio-temporal recurrent network that allows for realtime performance. In particular, we introduce a novel architecture which extends the receptive field while keeping the overall size of the network small to enable fast execution. In doing so, our network is able to remove even large blur caused by strong camera shake and/or fast moving objects. Furthermore, we propose a novel network layer that enforces temporal consistency between consecutive frames by dynamic temporal blending which compares and adaptively (at test time) shares features obtained at different time steps. We show the superiority of the proposed method in an extensive experimental evaluation. |
---|---|
AbstractList | State-of-the-art video deblurring methods are capable of removing non-uniform blur caused by unwanted camera shake and/or object motion in dynamic scenes. However, most existing methods are based on batch processing and thus need access to all recorded frames, rendering them computationally demanding and time-consuming and thus limiting their practical use. In contrast, we propose an online (sequential) video deblurring method based on a spatio-temporal recurrent network that allows for realtime performance. In particular, we introduce a novel architecture which extends the receptive field while keeping the overall size of the network small to enable fast execution. In doing so, our network is able to remove even large blur caused by strong camera shake and/or fast moving objects. Furthermore, we propose a novel network layer that enforces temporal consistency between consecutive frames by dynamic temporal blending which compares and adaptively (at test time) shares features obtained at different time steps. We show the superiority of the proposed method in an extensive experimental evaluation. |
Author | Hirsch, Michael Scholkopf, Bernhard Tae Hyun Kim Kyoung Mu Lee |
Author_xml | – sequence: 1 surname: Tae Hyun Kim fullname: Tae Hyun Kim email: tkim@tuebingen.mpg.de – sequence: 2 surname: Kyoung Mu Lee fullname: Kyoung Mu Lee email: kyoungmu@snu.ac.kr – sequence: 3 givenname: Bernhard surname: Scholkopf fullname: Scholkopf, Bernhard email: bernhard.schoelkopf@tuebingen.mpg.de – sequence: 4 givenname: Michael surname: Hirsch fullname: Hirsch, Michael email: michael.hirsch@tuebingen.mpg.de |
BookMark | eNotzLtOwzAUgGGDQKItHZlY_AIJto-vAwOkXCpVdCldq9g-QYbEqZIC6tsjBNM_fNI_JWe5z0jIFWcl58zdLKtqWwrGTSlBnZC5M5YrsJozEO6UTARYVhjF5AWZjuM7Y-CE1RNyu85tyki3KWJPF-jbz2FI-Y1-pZoujrnuUqAb7Pb9ULf0vsUcf_UFD9_98HFJzpu6HXH-3xl5fXzYVM_Fav20rO5WReJGHQrppAAvY3CNAg86NF4o7xB0A8ZK3_DA0angJTAZZHTa2Fo4hppFFz2HGbn--yZE3O2H1NXDcWcFGO0M_ACYuEkP |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICCV.2017.435 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISBN | 9781538610329 1538610329 |
EISSN | 2380-7504 |
EndPage | 4067 |
ExternalDocumentID | 8237697 |
Genre | orig-research |
GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-49423b4dc9f53b36cfb25b9e36f3784bf1c1e95cb4304c4d9678a290e60d9db13 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:42:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-49423b4dc9f53b36cfb25b9e36f3784bf1c1e95cb4304c4d9678a290e60d9db13 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8237697 |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct. |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
PublicationDecade | 2010 |
PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
PublicationTitleAbbrev | ICCV |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0039286 |
Score | 2.4684005 |
Snippet | State-of-the-art video deblurring methods are capable of removing non-uniform blur caused by unwanted camera shake and/or object motion in dynamic scenes.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4058 |
SubjectTerms | Cameras Decoding Dynamics Estimation Kernel Network architecture Streaming media |
Title | Online Video Deblurring via Dynamic Temporal Blending Network |
URI | https://ieeexplore.ieee.org/document/8237697 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTp5Qwfg7PXh0g21d1x68iBI0gXgAwo20XWeIZBAdHvzrfV0HGOPB29LDurRpv--9fe97ADehlKFkWeJpDAY8mmnqiYinXojRBpI5O2DzHcMRG0zo8yye1eB2VwtjjCnFZ8a3j-W__HSlNzZV1rHGKkwkdahj4OZqtba3LsI8Z3sPzc5Trze1wq3Ep7aT24_OKSVw9Jsw3E7p9CJv_qZQvv765cb43286hPa-RI-87MDnCGomP4ZmxSlJdWI_WnDnvETJdJGaFcHbZWlzfvkr-VxI8uDa0ZOx86daknvEIPs-MnLq8DZM-o_j3sCrWiZ4C-QBhUcF0iNFUy2yOFIR05kKYyVMxLIo4VRlgQ6MiLWiUZdqmgrEKhmKrmHdVKQqiE6gka9ycwpEGqM41RxDmpgGXCNVEyLEMyy15kEWn0HLrsZ87Vwx5tVCnP89fAEHdjecDO4SGsX7xlwhnBfqutzHbzP6n88 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPOgJFYy_7cGjHWxrt_bgRZSAAvEAhBtZu9YQyTA6PPjX265DjPHgbelhXdq03_fevvc9gKsgSYIk0jGWJhjAREuCechSHJhow5A5O2DzHYNh1B2ThymdVuD6uxZGKVWIz5RnH4t_-elSrmyqrGmNVSIeb8G2wX3qu2qt9b1rgJ5FGxfNZq_dnljpVuwR28vtR--UAjo6NRisJ3WKkRdvlQtPfv7yY_zvV-1BY1Okh56-4WcfKio7gFrJKlF5Zt_rcOPcRNFknqolMvfLwmb9smf0MU_QnWtIj0bOoWqBbg0K2fehodOHN2DcuR-1u7hsmoDnhgnkmHBDkARJJdc0FGEktQio4CqMdBgzIrQvfcWpFCRsEUlSbtAqCXhLRa2Up8IPD6GaLTN1BChRSjAimQlqKPGZNGSN88Cc4kRK5mt6DHW7GrNX54sxKxfi5O_hS9jpjgb9Wb83fDyFXbszThR3BtX8baXODbjn4qLY0y-8LKMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Online+Video+Deblurring+via+Dynamic+Temporal+Blending+Network&rft.au=Tae+Hyun+Kim&rft.au=Kyoung+Mu+Lee&rft.au=Scholkopf%2C+Bernhard&rft.au=Hirsch%2C+Michael&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=4058&rft.epage=4067&rft_id=info:doi/10.1109%2FICCV.2017.435&rft.externalDocID=8237697 |