3D Scene Reconstruction Improvement Based on Image Enhancement with Conditional Adversarial Networks
Nowadays, the development of automatic driving technology is well-improved the object segmentation with the point cloud data, furthermore will build up the environment model with the color image. However, the analysis of color image will still face lots of bottlenecks. This paper proposed using a ge...
Saved in:
Published in | 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE) pp. 367 - 368 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, the development of automatic driving technology is well-improved the object segmentation with the point cloud data, furthermore will build up the environment model with the color image. However, the analysis of color image will still face lots of bottlenecks. This paper proposed using a generative adversarial network to achieve intrinsic image decomposition faster and then applying a new interpolation algorithm to enhance the shadow layer to increase the contrast of color image. The results show that this method improved the accuracy and immediacy of the image enhancement, go a step further, improving the accuracy and immediacy of the environment reconstruction. |
---|---|
AbstractList | Nowadays, the development of automatic driving technology is well-improved the object segmentation with the point cloud data, furthermore will build up the environment model with the color image. However, the analysis of color image will still face lots of bottlenecks. This paper proposed using a generative adversarial network to achieve intrinsic image decomposition faster and then applying a new interpolation algorithm to enhance the shadow layer to increase the contrast of color image. The results show that this method improved the accuracy and immediacy of the image enhancement, go a step further, improving the accuracy and immediacy of the environment reconstruction. |
Author | Huang, Chun-Ju Cheng, Hao-Wen Li, Yen-Ju Bai, Yun-Hao Liu, Kai-Ting Fan, Yu-Cheng |
Author_xml | – sequence: 1 givenname: Yen-Ju surname: Li fullname: Li, Yen-Ju organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 2 givenname: Hao-Wen surname: Cheng fullname: Cheng, Hao-Wen organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 3 givenname: Kai-Ting surname: Liu fullname: Liu, Kai-Ting organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 4 givenname: Yun-Hao surname: Bai fullname: Bai, Yun-Hao organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 5 givenname: Chun-Ju surname: Huang fullname: Huang, Chun-Ju organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan – sequence: 6 givenname: Yu-Cheng surname: Fan fullname: Fan, Yu-Cheng organization: Department of Electronic Engineering, National Taipei University of Technology, Taipei, Taiwan |
BookMark | eNotkMlOwzAYhI0EElDyAIiLXyDBu51jCWmpVIHEcq4c5w81NE5lh1a8PUt7mtF8mjnMJToNQwCErikpKCXl7byq6oIRagojtZBUnaCs1IZKbpTipNTnKEvpgxDClOGGqgvU8nv84iAAfgY3hDTGLzf6IeBFv43DDnoII76zCVr8H9p3wHVY2-AOaO_HNa6G0Pq_lt3gabuDmGz0v_4Rxv0QP9MVOuvsJkF21Al6m9Wv1UO-fJovquky91TLMRfGSOpYqUkrmegkdNoK6xrpSg6WgBOOKyWBNkoq5iwXTpuO2g6arikl4xN0c9j1ALDaRt_b-L06fsF_AHzsV-0 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/GCCE.2018.8574516 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781538663097 1538663082 1538663090 9781538663080 |
EndPage | 368 |
ExternalDocumentID | 8574516 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAJGR ABLEC ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-48851c2970d524f5ef7a4acb5c93ea0ec4c3665e1b6562ca34c78f1afebfb9523 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:25 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-48851c2970d524f5ef7a4acb5c93ea0ec4c3665e1b6562ca34c78f1afebfb9523 |
PageCount | 2 |
ParticipantIDs | ieee_primary_8574516 |
PublicationCentury | 2000 |
PublicationDate | 2018-Oct. |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
PublicationDecade | 2010 |
PublicationTitle | 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE) |
PublicationTitleAbbrev | GCCE |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002683816 |
Score | 1.7242496 |
Snippet | Nowadays, the development of automatic driving technology is well-improved the object segmentation with the point cloud data, furthermore will build up the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 367 |
SubjectTerms | 3D model reconstruction image enhancement neural network |
Title | 3D Scene Reconstruction Improvement Based on Image Enhancement with Conditional Adversarial Networks |
URI | https://ieeexplore.ieee.org/document/8574516 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp5UNvGbHDzarmmbNL06N4ewIehgt9EkLziETth22V_vS1I3FA_eSkpJea_N-73f-yLkjimJKCE1kRYI33LObKQqYSKJ4BUBgjTMOGpgMhXjWf485_MWud_XwgCATz6D2F36WL5Z6a2jyvqSF26ubJu0i7IMtVp7PiUV0sXAmsAlS8r-02AwdLlbMm6e-zFAxduP0TGZfO8c0kY-4u1GxXr3qynjf1_thPQOlXr0ZW-DTkkL6i4x2SN91XiIUedcHlrE0sAgeEKQPqD5MtQv4pFCh_W707-_5bhZihuYZSAKqZ_avK7ct0qnIW983SOz0fBtMI6aaQrREiHCJsI_lTOdlkVieJpbDrao8korrssMqgR0rjMhODDllKerLNeFtKyyoKwq0V89I516VcM5oamARBllpBUK3etSAlo4oTNZgLFKmAvSdRJafIaGGYtGOJd_L1-RI6elkCF3TTooFLhBS79Rt17FX3hgquA |
link.rule.ids | 310,311,783,787,792,793,799,27938,55087 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsAEqEW88cBI0rzsOCulJUBbIdFK3ar4JSqkFKntwq_n7IRWIAa2yJHl6M7xfff5HgA3oeCIEiLlSYbwLaGh8UTBlMcRvCJA4CpUlhoYjlg-SZ6mdNqA200ujNbaBZ9p3z66u3y1kGtLlXU4TW1f2R3YRVzN0ypba8OoRIzbW7D66jIMss5Dt9uz0Vvcr2f-aKHiLEj_AIbfa1eBI-_-eiV8-fmrLON_P-4Q2ttcPfKysUJH0NBlC1R8T14lHmPEupfbIrGk4hAcJUju0IAp4gbxUCG98s3uAPfKsrMEF1Dziiokrm_zsrC7lYyqyPFlGyb93ribe3U_BW-OIGHl4b9KQxllaaBolBiqTVokhRRUZrEuAi0TGTNGdSis-mQRJzLlJiyMFkZk6LEeQ7NclPoESMR0IJRQ3DCBDnbGNdo4JmOeamUEU6fQshKafVQlM2a1cM7-Hr6GvXw8HMwGj6Pnc9i3Gqvi5S6giQLSl2j3V-LKqfsLlOWuLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+7th+Global+Conference+on+Consumer+Electronics+%28GCCE%29&rft.atitle=3D+Scene+Reconstruction+Improvement+Based+on+Image+Enhancement+with+Conditional+Adversarial+Networks&rft.au=Li%2C+Yen-Ju&rft.au=Cheng%2C+Hao-Wen&rft.au=Liu%2C+Kai-Ting&rft.au=Bai%2C+Yun-Hao&rft.date=2018-10-01&rft.pub=IEEE&rft.spage=367&rft.epage=368&rft_id=info:doi/10.1109%2FGCCE.2018.8574516&rft.externalDocID=8574516 |