Range Loss for Deep Face Recognition with Long-Tailed Training Data

Deep convolutional neural networks have achieved significant improvements on face recognition task due to their ability to learn highly discriminative features from tremendous amounts of face images. Many large scale face datasets exhibit long-tail distribution where a small number of entities (pers...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Conference on Computer Vision pp. 5419 - 5428
Main Authors Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, Yu Qiao
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep convolutional neural networks have achieved significant improvements on face recognition task due to their ability to learn highly discriminative features from tremendous amounts of face images. Many large scale face datasets exhibit long-tail distribution where a small number of entities (persons) have large number of face images while a large number of persons only have very few face samples (long tail). Most of the existing works alleviate this problem by simply cutting the tailed data and only keep identities with enough number of examples. Unlike these work, this paper investigated how long-tailed data impact the training of face CNNs and develop a novel loss function, called range loss, to effectively utilize the tailed data in training process. More specifically, range loss is designed to reduce overall intrapersonal variations while enlarge interpersonal differences simultaneously. Extensive experiments on two face recognition benchmarks, Labeled Faces in the Wild (LFW) [11] and YouTube Faces (YTF) [33], demonstrate the effectiveness of the proposed range loss in overcoming the long tail effect, and show the good generalization ability of the proposed methods.
AbstractList Deep convolutional neural networks have achieved significant improvements on face recognition task due to their ability to learn highly discriminative features from tremendous amounts of face images. Many large scale face datasets exhibit long-tail distribution where a small number of entities (persons) have large number of face images while a large number of persons only have very few face samples (long tail). Most of the existing works alleviate this problem by simply cutting the tailed data and only keep identities with enough number of examples. Unlike these work, this paper investigated how long-tailed data impact the training of face CNNs and develop a novel loss function, called range loss, to effectively utilize the tailed data in training process. More specifically, range loss is designed to reduce overall intrapersonal variations while enlarge interpersonal differences simultaneously. Extensive experiments on two face recognition benchmarks, Labeled Faces in the Wild (LFW) [11] and YouTube Faces (YTF) [33], demonstrate the effectiveness of the proposed range loss in overcoming the long tail effect, and show the good generalization ability of the proposed methods.
Author Yu Qiao
Zhiyuan Fang
Xiao Zhang
Yandong Wen
Zhifeng Li
Author_xml – sequence: 1
  surname: Xiao Zhang
  fullname: Xiao Zhang
  email: zhangx9411@gmail.com
  organization: Guangdong Provincial Key Lab. of Comput. Vision & Vitrual Reality Technol., Shenzhen Inst. of Adv. Technol., Shenzhen, China
– sequence: 2
  surname: Zhiyuan Fang
  fullname: Zhiyuan Fang
  email: fangzy@mail.sustc.edu.cn
  organization: Guangdong Provincial Key Lab. of Comput. Vision & Vitrual Reality Technol., Shenzhen Inst. of Adv. Technol., Shenzhen, China
– sequence: 3
  surname: Yandong Wen
  fullname: Yandong Wen
  email: yandongw@andrew.cmu.edu
  organization: Tencent AI Lab., Shenzhen, China
– sequence: 4
  surname: Zhifeng Li
  fullname: Zhifeng Li
  email: michaelzfli@tencent.com
– sequence: 5
  surname: Yu Qiao
  fullname: Yu Qiao
  email: yu.qiao@siat.ac.cn
  organization: Guangdong Provincial Key Lab. of Comput. Vision & Vitrual Reality Technol., Shenzhen Inst. of Adv. Technol., Shenzhen, China
BookMark eNotzEFLwzAYgOEoCm5zR09e8gdavy9pmuQondNBQRjV60jTLzUy09EWxH-vME_v5eFdsqs0JGLsDiFHBPuwq6r3XADqXGlzwdZWG1TSlAhS2Eu2ENJAphUUN2w5TZ8A0gpTLli1d6knXg_TxMMw8g3RiW-dJ74nP_QpznFI_DvOH38m9Vnj4pE63owupph6vnGzu2XXwR0nWv93xd62T031ktWvz7vqsc4iajVnhSbUGGzbWqLOYgBrPZZtcKXyLYEzrfCI2kIn0EDhVEegwIQOMJDxcsXuz99IRIfTGL_c-HMwQmpTgPwFM9NK1w
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICCV.2017.578
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538610329
1538610329
EISSN 2380-7504
EndPage 5428
ExternalDocumentID 8237840
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-47e171f9bb9eed91f099c16bfa65cbe0a8b2c11790d21804a5de0508fd01fe8c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:42:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-47e171f9bb9eed91f099c16bfa65cbe0a8b2c11790d21804a5de0508fd01fe8c3
PageCount 10
ParticipantIDs ieee_primary_8237840
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle Proceedings / IEEE International Conference on Computer Vision
PublicationTitleAbbrev ICCV
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0039286
Score 2.5508242
Snippet Deep convolutional neural networks have achieved significant improvements on face recognition task due to their ability to learn highly discriminative features...
SourceID ieee
SourceType Publisher
StartPage 5419
SubjectTerms Computer vision
Data models
Face
Face recognition
Training
Training data
Title Range Loss for Deep Face Recognition with Long-Tailed Training Data
URI https://ieeexplore.ieee.org/document/8237840
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEJ0AJ0-oYPzOHjy6ZdduC5yLBI0YQ8BwI_sxNcakECwXf72zbQFjPHhrNm262cnOe7M78wbgRqVWWxWH3BodciVT5BSrOHKGOlQeMlwhYDp-jkcz9TiP5jW43dXCIGKRfIaBfyzu8t3SbvxRWccLq1BAUoc6BW5lrdbW6xLM9-K9hmbnIUlefeJWN4h8B7UfnVMK4Bg2Ybz9ZZkv8hFschPYr19qjP-d0yG09yV67GUHPkdQw-wYmhWnZNWO_WxBMvHVA-yJsJARP2UDxBUbavp6sk0dWmbMn8bSO9kbn2pyE45Nq84RbKBz3YbZ8H6ajHjVOIG_ExvIueqi7Mq0b0yfZtGXKdFAK2OT6jiyBoXumTvrteCEI4QXSkcOBTG11AkyVs-GJ9DIlhmeAiN6EpnIhkIY40MxrUJltVSOeAjG0p1By6_JYlVqYyyq5Tj_e_gCDrxNymS4S2jk6w1eEajn5rqw5jd9IaGh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LT8JAEJ4gHvSECsa3e9BjSx_bAgdPRQLyiCHFcMN91RiTQqTE6G_xr_jfnG0LGOOVxFvTtE13ZzPfN7vfzABc0UgwQX3XEJy5BrUjZWCsItEZMpdqyJBpAdP-wG-P6N3YGxfgc5ULo5RKxWfK1JfpWb6cioXeKqvqwioYkOQSyq56f8MAbX7TaaI1rx2ndRsGbSPvIWA8IzAmBq0pu2ZHDc4biAYNO0JGJGyfR8z3BFcWq3NH6LJolkSwsyjzpLKQtETSwv-uCxe_uwXbyDM8J8sOW_p5JBZ1f121s9oJggctFauZnu7Z9qNXSwpVrRJ8LQeZKVRezEXCTfHxq_7jf52FPaiskxDJ_Qpe96Gg4gMo5ayZ5D5pXoZgqPMjSA_RniADJ02lZqTF8O3hUhw1jYneb8Zn4icjZOgIJQnz3hikyRJWgdFGBnQIxXgaqyMgSMA87gnXsjjXwSajLhXMphKZlvJteQxlbYPJLKv-Mcmn_-Tv25ew0w77vUmvM-iewq5eD5n07wyKyetCnSOFSfhFupIIPG7aaN8NSgCO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=Range+Loss+for+Deep+Face+Recognition+with+Long-Tailed+Training+Data&rft.au=Xiao+Zhang&rft.au=Zhiyuan+Fang&rft.au=Yandong+Wen&rft.au=Zhifeng+Li&rft.date=2017-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=5419&rft.epage=5428&rft_id=info:doi/10.1109%2FICCV.2017.578&rft.externalDocID=8237840