Vehicle fingerprinting for reacquisition & tracking in videos

Visual recognition of objects through multiple observations is an important component of object tracking. We address the problem of vehicle matching when multiple observations of a vehicle are separated in time such that frames of observations are not contiguous, thus prohibiting the use of standard...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 761 - 768 vol. 2
Main Authors Guo, Y., Hsu, S., Shan, Y., Sawhney, H., Rakesh Kumar
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual recognition of objects through multiple observations is an important component of object tracking. We address the problem of vehicle matching when multiple observations of a vehicle are separated in time such that frames of observations are not contiguous, thus prohibiting the use of standard frame-to-frame data association. We employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. The challenges of change in pose, aspect and appearances across two disparate observations are handled by combining feature-based quasi-rigid alignment with flexible matching between two or more sequences. The current work uses the domain of vehicle tracking from aerial platforms where typically both the imaging platform and the vehicles are moving and the number of pixels on the object are limited to fairly low resolutions. Extensive evaluation with respect to ground truth is reported in the paper.
AbstractList Visual recognition of objects through multiple observations is an important component of object tracking. We address the problem of vehicle matching when multiple observations of a vehicle are separated in time such that frames of observations are not contiguous, thus prohibiting the use of standard frame-to-frame data association. We employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. The challenges of change in pose, aspect and appearances across two disparate observations are handled by combining feature-based quasi-rigid alignment with flexible matching between two or more sequences. The current work uses the domain of vehicle tracking from aerial platforms where typically both the imaging platform and the vehicles are moving and the number of pixels on the object are limited to fairly low resolutions. Extensive evaluation with respect to ground truth is reported in the paper.
Author Rakesh Kumar
Guo, Y.
Shan, Y.
Hsu, S.
Sawhney, H.
Author_xml – sequence: 1
  givenname: Y.
  surname: Guo
  fullname: Guo, Y.
  organization: Sarnoff Corp., Princeton, NJ, USA
– sequence: 2
  givenname: S.
  surname: Hsu
  fullname: Hsu, S.
  organization: Sarnoff Corp., Princeton, NJ, USA
– sequence: 3
  givenname: Y.
  surname: Shan
  fullname: Shan, Y.
  organization: Sarnoff Corp., Princeton, NJ, USA
– sequence: 4
  givenname: H.
  surname: Sawhney
  fullname: Sawhney, H.
  organization: Sarnoff Corp., Princeton, NJ, USA
– sequence: 5
  surname: Rakesh Kumar
  fullname: Rakesh Kumar
  organization: Sarnoff Corp., Princeton, NJ, USA
BookMark eNpNjz1LBDEYhIOe4N15pZVNKrtd33wnhYUcfsGBInrtkc2-0eiZ1ewq-O9d0cJpZuCBYWZGJrnLSMghg5oxcCfL9e1dzQFULbTcIVMGWlTaMbdLZmC0U1wYzif_wD5Z9P0zjBJOWMmn5HSNTylskcaUH7G8lZSHMdHYFVrQh_eP1KchdZke06H48PIDU6afqcWuPyB70W97XPz5nDxcnN8vr6rVzeX18mxVJWbUUEljQhMwMGDQeBTBWpRKtdEDBKkbbyPEALG1GBpmGoESjAPbcj6-EFzMydFvb0LEzTjy1ZevDZPaKObEN0xgS-Y
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.364
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 768 vol. 2
ExternalDocumentID 1467519
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-477cbcec1010bae3c88e455dfa00c46ba8f0fc0fd8ecb17b3e407908d22695323
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-477cbcec1010bae3c88e455dfa00c46ba8f0fc0fd8ecb17b3e407908d22695323
ParticipantIDs ieee_primary_1467519
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.6916002
Snippet Visual recognition of objects through multiple observations is an important component of object tracking. We address the problem of vehicle matching when...
SourceID ieee
SourceType Publisher
StartPage 761
SubjectTerms Data mining
Feature extraction
Fingerprint recognition
Image resolution
Object recognition
Pixel
Tracking
Training data
Vehicles
Videos
Title Vehicle fingerprinting for reacquisition & tracking in videos
URI https://ieeexplore.ieee.org/document/1467519
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKJ6YCLeJbHhATadM4TuyBqaKqkIoqRKtuVeycRYWUQpss_Hp8zkcRYmCL7QyJ5ZPfvbt7R8it4FImkTVAaeLUCyFRnoQw9XhkmDKGWxCLhcLT52gyD5-WfNki900tDAC45DPo46OL5acbXSBVNkCr5qjxeWAdt7JWq-FTsMZUVG4ejpn1bCLZRBQC7MbiIp8R8yI5lKULLzkuBJUSTz2WezHOwWgxeympF4aqBD9asLgbaNwh0_rby8ST936Rq77--iXr-N-fOyK9fa0fnTW32DFpQXZCOhU4pZXp7-xU3f-hnuuShwW84bGjxnGDSBFiEjW1OJhaLKo_i3WZEUbvaL5NNLLydJ1RLP3b7HpkPn58HU28qh2Dt7YYI_fCONZKg7ZG7KsEmBYCQs5Tk_i-DiOVCOMb7ZtUgFbDWDGwzqL0RWoRnuQsYKeknW0yOCN0CIDQSAW-fQlEIkFKDlpiVJmDkOekixu0-igVN1bV3lz8PX1JDp2gqiNGrkg73xZwbaFCrm7cGfkGX0e1PQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWqMsBUoEV84wExkTZp4sQemCqqAm1VobbqVsXOWVRIKbTJwq_Hl68ixMAWOxkSxye_e3f3jpBbzoQIfWOAQgeR5UEoLQFeZDFfu1JrZkAsFgqPxv5g5j0v2KJG7qtaGADIks-gjZdZLD9aqxSpsg5aNUONzz1z7jMnr9aqGBWsMuWFo4dj1_g2vqhiCl3sx5LFPn3X8oUjcideMLzRLbR4yrHYyXF2evPJa06-uKhL8KMJS3YG9RtkVL59nnry3k4T2VZfv4Qd__t5h6S1q_ajk-ocOyI1iI9Jo4CntDD-rZkqO0CUc03yMIc33HhUZ-wgkoSYRk0NEqYGjarPdJXnhNE7mmxChbw8XcUUi__W2xaZ9R-nvYFVNGSwVgZlJJYXBEoqUMaMbRmCqzgH8yMiHdq28nwZcm1rZeuIg5JOIF0w7qKweWQwnmBu1z0h9XgdwymhDgCCI9m1zUPAQwFCMFAC48oMuDgjTVyg5UeuubEs1ub87-kbsj-YjobL4dP45YIcZPKqGU1ySerJJoUrAxwSeZ3tl28MZ7iG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Vehicle+fingerprinting+for+reacquisition+%26+tracking+in+videos&rft.au=Guo%2C+Y.&rft.au=Hsu%2C+S.&rft.au=Shan%2C+Y.&rft.au=Sawhney%2C+H.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=761&rft.epage=768+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.364&rft.externalDocID=1467519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon