A Wearable Wireless Brain-Computer Interface Using Steady-State Visual Evoked Potentials

The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in differentiating two conditions. This approach has the potential to be implemented as a computer input device for users to express choices (e.g., left...

Full description

Saved in:
Bibliographic Details
Published in2018 3rd International Conference on Control, Robotics and Cybernetics (CRC) pp. 78 - 82
Main Authors Lim, Alfred, Chia, Wai Chong
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.09.2018
Subjects
Online AccessGet full text
DOI10.1109/CRC.2018.00024

Cover

Loading…
Abstract The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in differentiating two conditions. This approach has the potential to be implemented as a computer input device for users to express choices (e.g., left and right, yes and no). The attentional allocation of participants among boxes that each flicker at a different frequency (e.g., 8.6 Hz and 12 Hz) can be distinguished based on EEG alone. Traditionally, steady-state visual evoked potentials (SSVEPs) are studied using multi-channel EEG systems, which greatly hinders the user's mobility. Although SSVEPs are mostly examined in the frequency domain and from the occipital region of the brain, we tested five classifiers with 44 features extracted from the EEG, recorded using an electrode at the frontopolar area (FP1). Apart from using frequency-domain features, such as fast Fourier transform (FFT) coefficients and power spectral density (PSD) features, we also included time-domain features from the pre-frontal region and achieved an average classification accuracy of 74.58% using a random forest (RF) classifier.
AbstractList The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in differentiating two conditions. This approach has the potential to be implemented as a computer input device for users to express choices (e.g., left and right, yes and no). The attentional allocation of participants among boxes that each flicker at a different frequency (e.g., 8.6 Hz and 12 Hz) can be distinguished based on EEG alone. Traditionally, steady-state visual evoked potentials (SSVEPs) are studied using multi-channel EEG systems, which greatly hinders the user's mobility. Although SSVEPs are mostly examined in the frequency domain and from the occipital region of the brain, we tested five classifiers with 44 features extracted from the EEG, recorded using an electrode at the frontopolar area (FP1). Apart from using frequency-domain features, such as fast Fourier transform (FFT) coefficients and power spectral density (PSD) features, we also included time-domain features from the pre-frontal region and achieved an average classification accuracy of 74.58% using a random forest (RF) classifier.
Author Lim, Alfred
Chia, Wai Chong
Author_xml – sequence: 1
  givenname: Alfred
  surname: Lim
  fullname: Lim, Alfred
  organization: University of Nottingham - Malaysia Campus
– sequence: 2
  givenname: Wai Chong
  surname: Chia
  fullname: Chia, Wai Chong
  organization: Sunway University
BookMark eNotzL1OwzAUQGEjwUALKwuLXyDBN_7NWKJCK1UC0ULZqpvkGlmkSeW4SH17KsFyvu1M2GU_9MTYHYgcQJQP1VuVFwJcLoQo1AWbgJbOWCudvmafM74ljFh3xLchUkfjyB8jhj6rhv3hmCjyZX-ux4b4-xj6L75OhO0pWydMxD_CeMSOz3-Gb2r565CoTwG78YZd-TN0---UbZ7mm2qRrV6el9VslQWwOmXKCvKNQScaB7VCp42GwoBrVatqYWQrS2dJGiDhUYIEcMbX2jeqqQ3IKbv_2wYi2h1i2GM87Zy1ZVkW8hfnLkzn
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CRC.2018.00024
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEL
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538677385
9781538677384
EndPage 82
ExternalDocumentID 8779992
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i175t-470efc6a80c81b4a856512618d4d4b063d3987e361e0fa3131186fb5fc4cb613
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:14 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-470efc6a80c81b4a856512618d4d4b063d3987e361e0fa3131186fb5fc4cb613
PageCount 5
ParticipantIDs ieee_primary_8779992
PublicationCentury 2000
PublicationDate 2018-Sept.
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sept.
PublicationDecade 2010
PublicationTitle 2018 3rd International Conference on Control, Robotics and Cybernetics (CRC)
PublicationTitleAbbrev CRC
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6863704
Snippet The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in...
SourceID ieee
SourceType Publisher
StartPage 78
SubjectTerms brain-computer interface
Electrodes
Electroencephalography
Feature extraction
machine learning
Radio frequency
Steady-state visual evoked potential
visual attention
Visualization
Wireless communication
Wireless sensor networks
Title A Wearable Wireless Brain-Computer Interface Using Steady-State Visual Evoked Potentials
URI https://ieeexplore.ieee.org/document/8779992
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXh0243ZJJujlpYiVIpU7a3sJ5SWRjQR9Nc7s2mriAdvIWRJ2Bl23kzemyHk0kTWePBbBnBUMZEbwXSkHJNJLr0CyJFbrHeM7tPho7ibJtMGudpqYZxzgXzmOngZ_uXbwlRYKuvKLAM8AwfuDrhZrdVa92GMeN7tPfSQqoXcSI4C9h_TUkKwGOyR0eY1NUdk0alK3TGfvzow_vc79kn7W5ZHx9uAc0AabtUi0xv6DN6KCiiKVNYlHF30Fgc_sM3EBhrKfl7B8sAQoEjitR8sAE36NH-r1JL234uFs3RclMgfAqdsk8mgP-kN2XpcApsDBiiZyLjzJlWSG8CiQknAahEkSNIKKzRAERvnMnNxGjnuVYx9dmTqdeKNMBqi-iFproqVOyJU5LGGTIMnYD_h4TFIv681V8JCdpEl7pi0cFNmL3VDjNl6P07-vn1KdtEsNTHrjDTL18qdQyQv9UUw4RdPr6A5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOhJDRgVP_bg0YWt3bbboxIIKhBiULmR_UwIhBptTfTXO7sFNMaDt6bpps3OZOfN9L0ZhC5UoJUFvyUARwVhqWJEBsIQHqXcCoAcqXb1jsEw7j2yu0k0qaDLjRbGGOPJZ6bpLv2_fJ2pwpXKWjxJAM_AgbsFcZ9FpVpr1YkxoGmr_dB2ZC3HjqROwv5jXooPF91dNFi_qGSJzJtFLpvq81cPxv9-yR6qfwvz8GgTcvZRxSxraHKNn8FfnQYKOzLrAg4vfONGP5D1zAbsC39WwHLPEcCOxqs_iIea-Gn2VogF7rxnc6PxKMsdgwjcso7G3c643SOrgQlkBiggJyyhxqpYcKoAjTLBAa0FkCJxzTSTAEZ0mPLEhHFgqBWh67TDYysjq5iSENcPUHWZLc0hwiwNJeQaNAILMguPQQJ-JalgGvKLJDJHqOY2ZfpStsSYrvbj-O_b52i7Nx70p_3b4X0D7TgTlTStE1TNXwtzCnE9l2fenF_izaOG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+3rd+International+Conference+on+Control%2C+Robotics+and+Cybernetics+%28CRC%29&rft.atitle=A+Wearable+Wireless+Brain-Computer+Interface+Using+Steady-State+Visual+Evoked+Potentials&rft.au=Lim%2C+Alfred&rft.au=Chia%2C+Wai+Chong&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=78&rft.epage=82&rft_id=info:doi/10.1109%2FCRC.2018.00024&rft.externalDocID=8779992