A Wearable Wireless Brain-Computer Interface Using Steady-State Visual Evoked Potentials
The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in differentiating two conditions. This approach has the potential to be implemented as a computer input device for users to express choices (e.g., left...
Saved in:
Published in | 2018 3rd International Conference on Control, Robotics and Cybernetics (CRC) pp. 78 - 82 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/CRC.2018.00024 |
Cover
Loading…
Abstract | The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in differentiating two conditions. This approach has the potential to be implemented as a computer input device for users to express choices (e.g., left and right, yes and no). The attentional allocation of participants among boxes that each flicker at a different frequency (e.g., 8.6 Hz and 12 Hz) can be distinguished based on EEG alone. Traditionally, steady-state visual evoked potentials (SSVEPs) are studied using multi-channel EEG systems, which greatly hinders the user's mobility. Although SSVEPs are mostly examined in the frequency domain and from the occipital region of the brain, we tested five classifiers with 44 features extracted from the EEG, recorded using an electrode at the frontopolar area (FP1). Apart from using frequency-domain features, such as fast Fourier transform (FFT) coefficients and power spectral density (PSD) features, we also included time-domain features from the pre-frontal region and achieved an average classification accuracy of 74.58% using a random forest (RF) classifier. |
---|---|
AbstractList | The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in differentiating two conditions. This approach has the potential to be implemented as a computer input device for users to express choices (e.g., left and right, yes and no). The attentional allocation of participants among boxes that each flicker at a different frequency (e.g., 8.6 Hz and 12 Hz) can be distinguished based on EEG alone. Traditionally, steady-state visual evoked potentials (SSVEPs) are studied using multi-channel EEG systems, which greatly hinders the user's mobility. Although SSVEPs are mostly examined in the frequency domain and from the occipital region of the brain, we tested five classifiers with 44 features extracted from the EEG, recorded using an electrode at the frontopolar area (FP1). Apart from using frequency-domain features, such as fast Fourier transform (FFT) coefficients and power spectral density (PSD) features, we also included time-domain features from the pre-frontal region and achieved an average classification accuracy of 74.58% using a random forest (RF) classifier. |
Author | Lim, Alfred Chia, Wai Chong |
Author_xml | – sequence: 1 givenname: Alfred surname: Lim fullname: Lim, Alfred organization: University of Nottingham - Malaysia Campus – sequence: 2 givenname: Wai Chong surname: Chia fullname: Chia, Wai Chong organization: Sunway University |
BookMark | eNotzL1OwzAUQGEjwUALKwuLXyDBN_7NWKJCK1UC0ULZqpvkGlmkSeW4SH17KsFyvu1M2GU_9MTYHYgcQJQP1VuVFwJcLoQo1AWbgJbOWCudvmafM74ljFh3xLchUkfjyB8jhj6rhv3hmCjyZX-ux4b4-xj6L75OhO0pWydMxD_CeMSOz3-Gb2r565CoTwG78YZd-TN0---UbZ7mm2qRrV6el9VslQWwOmXKCvKNQScaB7VCp42GwoBrVatqYWQrS2dJGiDhUYIEcMbX2jeqqQ3IKbv_2wYi2h1i2GM87Zy1ZVkW8hfnLkzn |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CRC.2018.00024 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEL IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538677385 9781538677384 |
EndPage | 82 |
ExternalDocumentID | 8779992 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i175t-470efc6a80c81b4a856512618d4d4b063d3987e361e0fa3131186fb5fc4cb613 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:14 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-470efc6a80c81b4a856512618d4d4b063d3987e361e0fa3131186fb5fc4cb613 |
PageCount | 5 |
ParticipantIDs | ieee_primary_8779992 |
PublicationCentury | 2000 |
PublicationDate | 2018-Sept. |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-Sept. |
PublicationDecade | 2010 |
PublicationTitle | 2018 3rd International Conference on Control, Robotics and Cybernetics (CRC) |
PublicationTitleAbbrev | CRC |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6863704 |
Snippet | The objective of this study is to investigate the feasibility of a single-electrode electroencephalogram (EEG)-based brain-computer interface (BCI) in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 78 |
SubjectTerms | brain-computer interface Electrodes Electroencephalography Feature extraction machine learning Radio frequency Steady-state visual evoked potential visual attention Visualization Wireless communication Wireless sensor networks |
Title | A Wearable Wireless Brain-Computer Interface Using Steady-State Visual Evoked Potentials |
URI | https://ieeexplore.ieee.org/document/8779992 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT55UWvGbPXh0243ZJJujlpYiVIpU7a3sJ5SWRjQR9Nc7s2mriAdvIWRJ2Bl23kzemyHk0kTWePBbBnBUMZEbwXSkHJNJLr0CyJFbrHeM7tPho7ibJtMGudpqYZxzgXzmOngZ_uXbwlRYKuvKLAM8AwfuDrhZrdVa92GMeN7tPfSQqoXcSI4C9h_TUkKwGOyR0eY1NUdk0alK3TGfvzow_vc79kn7W5ZHx9uAc0AabtUi0xv6DN6KCiiKVNYlHF30Fgc_sM3EBhrKfl7B8sAQoEjitR8sAE36NH-r1JL234uFs3RclMgfAqdsk8mgP-kN2XpcApsDBiiZyLjzJlWSG8CiQknAahEkSNIKKzRAERvnMnNxGjnuVYx9dmTqdeKNMBqi-iFproqVOyJU5LGGTIMnYD_h4TFIv681V8JCdpEl7pi0cFNmL3VDjNl6P07-vn1KdtEsNTHrjDTL18qdQyQv9UUw4RdPr6A5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOhJDRgVP_bg0YWt3bbboxIIKhBiULmR_UwIhBptTfTXO7sFNMaDt6bpps3OZOfN9L0ZhC5UoJUFvyUARwVhqWJEBsIQHqXcCoAcqXb1jsEw7j2yu0k0qaDLjRbGGOPJZ6bpLv2_fJ2pwpXKWjxJAM_AgbsFcZ9FpVpr1YkxoGmr_dB2ZC3HjqROwv5jXooPF91dNFi_qGSJzJtFLpvq81cPxv9-yR6qfwvz8GgTcvZRxSxraHKNn8FfnQYKOzLrAg4vfONGP5D1zAbsC39WwHLPEcCOxqs_iIea-Gn2VogF7rxnc6PxKMsdgwjcso7G3c643SOrgQlkBiggJyyhxqpYcKoAjTLBAa0FkCJxzTSTAEZ0mPLEhHFgqBWh67TDYysjq5iSENcPUHWZLc0hwiwNJeQaNAILMguPQQJ-JalgGvKLJDJHqOY2ZfpStsSYrvbj-O_b52i7Nx70p_3b4X0D7TgTlTStE1TNXwtzCnE9l2fenF_izaOG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+3rd+International+Conference+on+Control%2C+Robotics+and+Cybernetics+%28CRC%29&rft.atitle=A+Wearable+Wireless+Brain-Computer+Interface+Using+Steady-State+Visual+Evoked+Potentials&rft.au=Lim%2C+Alfred&rft.au=Chia%2C+Wai+Chong&rft.date=2018-09-01&rft.pub=IEEE&rft.spage=78&rft.epage=82&rft_id=info:doi/10.1109%2FCRC.2018.00024&rft.externalDocID=8779992 |