Unsupervised learning of discriminative edge measures for vehicle matching between non-overlapping cameras

This paper proposes a method for matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem: probability of two observations from two distinct cameras being from the same vehicle or from different vehicles. We employ a me...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 894 - 901 vol. 1
Main Authors Ying Shan, Sawhney, H.S., Kumar, R.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a method for matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem: probability of two observations from two distinct cameras being from the same vehicle or from different vehicles. We employ a measurement vector consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each match measure in the final decision is determined by a unsupervised learning process so that the same-different classification can be optimally separated in the combined measurement space. The robustness of the match measures and the use of discriminant analysis in the classification ensure that the proposed method performs better than existing edge-based approaches, especially in the presence of missing/false edges caused by shadows and different illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.
AbstractList This paper proposes a method for matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem: probability of two observations from two distinct cameras being from the same vehicle or from different vehicles. We employ a measurement vector consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps. The weight of each match measure in the final decision is determined by a unsupervised learning process so that the same-different classification can be optimally separated in the combined measurement space. The robustness of the match measures and the use of discriminant analysis in the classification ensure that the proposed method performs better than existing edge-based approaches, especially in the presence of missing/false edges caused by shadows and different illumination conditions, and systematic misalignment caused by different camera configurations. Extensive experiments based on real data of over 200 vehicles at different times of day demonstrate promising results.
Author Sawhney, H.S.
Ying Shan
Kumar, R.
Author_xml – sequence: 1
  surname: Ying Shan
  fullname: Ying Shan
  organization: Sarnoff Corp., Princeton, NJ, USA
– sequence: 2
  givenname: H.S.
  surname: Sawhney
  fullname: Sawhney, H.S.
  organization: Sarnoff Corp., Princeton, NJ, USA
– sequence: 3
  givenname: R.
  surname: Kumar
  fullname: Kumar, R.
  organization: Sarnoff Corp., Princeton, NJ, USA
BookMark eNpNT81KAzEYDFrBtvboyUteYGu-zebvKEWrUFDEei1p9kubst1dku2Kb-8WPTiXgRlmmJmQUd3USMgtsDkAM_eLz7f3ec6YmHOhL8gYmOSZNGAuyYQpaUTOVZ6P_hnXZJbSgQ3ghusiH5PDuk6nFmMfEpa0QhvrUO9o42kZkovhGGrbhR4pljukR7TpFDFR30Ta4z64ahBt5_bn0Ba7L8SaDjOzpsdY2bY9684eMdp0Q668rRLO_nhK1k-PH4vnbPW6fFk8rLIASnRZIb3XBbdbx4QWoDWTTKCSNgeFHguwBphmRnkoLHBnc-GNdKi5KhVox6fk7rc3IOKmHT7Y-L2BQiougf8AxlFcdQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.358
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 901 vol. 1
ExternalDocumentID 1467361
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-46ff843abc05851880605e76a217efe41a9108097f14a13ca25f96ce837d718c3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:29 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-46ff843abc05851880605e76a217efe41a9108097f14a13ca25f96ce837d718c3
ParticipantIDs ieee_primary_1467361
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.6956735
Snippet This paper proposes a method for matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different...
SourceID ieee
SourceType Publisher
StartPage 894
SubjectTerms Cameras
Distributed computing
Filters
Geometrical optics
Lighting
Performance analysis
Performance evaluation
Road vehicles
Robustness
Unsupervised learning
Title Unsupervised learning of discriminative edge measures for vehicle matching between non-overlapping cameras
URI https://ieeexplore.ieee.org/document/1467361
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ6YCLeItD4ykberEieeKqkIqqhBF3SrHOZdnW5GEgV_PnZMUhBjYYidSEsu-u-9eH2OX2lplEt94qBu0ozDzEkhjD3zSrxHEoauQm9zK8Sy4mYfzBrva1sIAgEs-gy5dulh-ujYFucp6dKoFYZ0dBG5lrdbWn0I1pnEF82gsENlItY0oDIiNxUU-pfCk8lUJ4VVINwZVJ556rL6bcfaGD9O70vUiiBb-BwWL00CjFpvU314mnrx0izzpms9fbR3_-3N7rPNd68enWy22zxqwOmCtyjjl1dHPcKrmf6jn2ux5tsqKDQmbDB-t-CeWfG051fqWfGEkTTn57Phb6Y3MOJrJ_AMeacNytJddMiev8sX4ar3yKKv0VVPjiCU3mrxmWYfNRtf3w7FXcTd4T2iQ5F4grY0DoRPTp8AjSgnETRBJjRAILAS-VpTdqCLrB9oXRg9Cq6QBxMspqksjDlkT3whHjIsUxVKswzCK-oEBG2vEYAn4IpQQy749Zm1azcWmbM-xqBby5O_pU7bruq86L8oZa-bvBZyjXZEnF25DfQEhNMVd
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-IHvSECsZve_DogNGtW89EggqEGDDcSFde8ROIAw_-9b7XDTDGg7e1W7Ktad97v_f1Y-xKW6tM4hsPdYN2FGZeAuPYA5_0awRx6CrkOl3ZGgR3w3BYYNfrWhgAcMlnUKFLF8sfz8ySXGVVOtWCsM426v3Qz6q11h4VqjKNc6BHY4HYRqp1TKFOfCwu9imFJ5WvMhCvQrpRz3vxrMZq046z2njsPWTOF0HE8D9IWJwOahZZZ_X1WerJa2W5SCrm61djx__-3h4rb6r9eG-tx_ZZAaYHrJibpzw__ClOrRggVnMl9jKYpss5iZsUH80ZKCZ8ZjlV-2aMYSRPOXnt-Hvmj0w5Gsr8E55oy3K0mF06J88zxvh0NvUor_RNU-uICTea_GZpmQ2aN_1Gy8vZG7xnNEkWXiCtjQOhE1Oj0CPKCUROEEmNIAgsBL5WlN-oIusH2hdG10OrpAFEzGNUmEYcsi18IxwxLsYomGIdhlFUCwzYWCMKS8AXoYRY1uwxK9FqjuZZg45RvpAnf09fsp1Wv9MetW-796ds1_VidT6VM7a1-FjCOVoZi-TCba5vn-vIpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Unsupervised+learning+of+discriminative+edge+measures+for+vehicle+matching+between+non-overlapping+cameras&rft.au=Ying+Shan&rft.au=Sawhney%2C+H.S.&rft.au=Kumar%2C+R.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=894&rft.epage=901+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.358&rft.externalDocID=1467361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon