Neural 3D Mesh Renderer

For modeling the 3D world behind 2D images, which 3D representation is most appropriate? A polygon mesh is a promising candidate for its compactness and geometric properties. However, it is not straightforward to model a polygon mesh from 2D images using neural networks because the conversion from a...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3907 - 3916
Main Authors Kato, Hiroharu, Ushiku, Yoshitaka, Harada, Tatsuya
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For modeling the 3D world behind 2D images, which 3D representation is most appropriate? A polygon mesh is a promising candidate for its compactness and geometric properties. However, it is not straightforward to model a polygon mesh from 2D images using neural networks because the conversion from a mesh to an image, or rendering, involves a discrete operation called rasterization, which prevents back-propagation. Therefore, in this work, we propose an approximate gradient for rasterization that enables the integration of rendering into neural networks. Using this renderer, we perform single-image 3D mesh reconstruction with silhouette image supervision and our system outperforms the existing voxel-based approach. Additionally, we perform gradient-based 3D mesh editing operations, such as 2D-to-3D style transfer and 3D DeepDream, with 2D supervision for the first time. These applications demonstrate the potential of the integration of a mesh renderer into neural networks and the effectiveness of our proposed renderer.
AbstractList For modeling the 3D world behind 2D images, which 3D representation is most appropriate? A polygon mesh is a promising candidate for its compactness and geometric properties. However, it is not straightforward to model a polygon mesh from 2D images using neural networks because the conversion from a mesh to an image, or rendering, involves a discrete operation called rasterization, which prevents back-propagation. Therefore, in this work, we propose an approximate gradient for rasterization that enables the integration of rendering into neural networks. Using this renderer, we perform single-image 3D mesh reconstruction with silhouette image supervision and our system outperforms the existing voxel-based approach. Additionally, we perform gradient-based 3D mesh editing operations, such as 2D-to-3D style transfer and 3D DeepDream, with 2D supervision for the first time. These applications demonstrate the potential of the integration of a mesh renderer into neural networks and the effectiveness of our proposed renderer.
Author Ushiku, Yoshitaka
Harada, Tatsuya
Kato, Hiroharu
Author_xml – sequence: 1
  givenname: Hiroharu
  surname: Kato
  fullname: Kato, Hiroharu
– sequence: 2
  givenname: Yoshitaka
  surname: Ushiku
  fullname: Ushiku, Yoshitaka
– sequence: 3
  givenname: Tatsuya
  surname: Harada
  fullname: Harada, Tatsuya
BookMark eNotzLlOxDAQAFCDQGJZUm9Bkx9ImPExHpconNJyaAW0K8cZi6AlIAcK_p4Cqte9Y3UwfUyi1AqhRYRw1r08bloNyC2ARdxTVfCMzjCR1RD21QKBTEMBw5Gq5vkNADSxYesWanUv3yXuanNR38n8Wm9kGqRIOVGHOe5mqf5dquery6fuplk_XN925-tmRO--GqujdUSiNaZBZ4i9GQLmTExCmFLyPUMOPWejEY1A9JwxRkNgLSQ2S3X6944isv0s43ssP1t2nh0E8wtrWTtH
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00411
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 3916
ExternalDocumentID 8578509
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-42a4566e221cd2f0ab3d91ff686e61ccc7b80f9b8f32113e0a78f1aa360440c83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-42a4566e221cd2f0ab3d91ff686e61ccc7b80f9b8f32113e0a78f1aa360440c83
PageCount 10
ParticipantIDs ieee_primary_8578509
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6206434
Snippet For modeling the 3D world behind 2D images, which 3D representation is most appropriate? A polygon mesh is a promising candidate for its compactness and...
SourceID ieee
SourceType Publisher
StartPage 3907
SubjectTerms Face
Image color analysis
Neural networks
Rendering (computer graphics)
Solid modeling
Three-dimensional displays
Two dimensional displays
Title Neural 3D Mesh Renderer
URI https://ieeexplore.ieee.org/document/8578509
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VTkwFWr5BGRhJmtjBtedCVSEFVRVF3Sp_XAQCtahNFn49viQUhBjYbA-RPxTdO_vdewBXTDsmUMnQowOfoBglQg9iWWid0drFzglB9c7ZgxjP0vv5zbwF19taGESsyGcYUbN6y3crW9JVWV-SMgtV6-34xK2u1drepzAhuWxeyKjPfWYjlGzUfJJY9YdPkylxuYg8mZJj0A87lSqajDqQfc2jJpG8RmVhIvvxS6LxvxPdg9533V4w2UakfWjh8gA6DdAMmt9404UjkuTQbwG_DTLcPAfTyk8O1z2Yje4eh-OwcUgIX3zYL8KUaQ-ABDKWWMfyWBvuVJLnQgoUibV2YGScKyNz2g6OsR7IPNGaC3KatpIfQnu5WuIxBCSsL5xyjBuZMqc0fcijH9_1GV1qT6BL61y81yIYi2aJp38Pn8Eu7XTNqTqHdrEu8cJH78JcVsf2CU7glbc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP9C8KAnVPD92MGjg60dpT2jBJURQsBwI30tEs0wMC7-9fbbJhrjwVvbw9JHlu_72t8D4IZIQ5gV3HfZgStQlGC-S2KJr42S0gTGMIZ853jI-tPocdaeVeB2y4Wx1ubgM9vEZv6Wb5Z6g1dlLY7KLMjW23Fxv00Kttb2RoUwTnn5RoZ96mobJnip5xMGotV9Ho0RzYXwyQg9g34YquTxpFeD-GsmBYzktbnJVFN__BJp_O9U96HxzdzzRtuYdAAVmx5CrUw1vfJHXtfhGEU55JtH77zYrl-8ce4oZ1cNmPbuJ92-X3ok-AsX-DM_ItKlQMwSEmpDkkAqakSYJIwzy0KtdUfxIBGKJ7gd1Aayw5NQSsrQa1pzegTVdJnaE_BQWp8ZYQhVPCJGSPyQy39c19V0kT6FOq5z_l7IYMzLJZ79PXwNu_1JPJgPHoZP57CHu14grC6gmq029tLF8kxd5Uf4CVpBmQE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Neural+3D+Mesh+Renderer&rft.au=Kato%2C+Hiroharu&rft.au=Ushiku%2C+Yoshitaka&rft.au=Harada%2C+Tatsuya&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3907&rft.epage=3916&rft_id=info:doi/10.1109%2FCVPR.2018.00411&rft.externalDocID=8578509