Local relative GLRLM-based texture feature extraction for classifying ultrasound medical images

This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM) based global feature. To adapt the traditional global approach of GLRLM -based feature extraction method, a three level partitioning of images...

Full description

Saved in:
Bibliographic Details
Published in2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE) pp. 001092 - 001095
Main Authors Sohail, Abu Sayeed Md, Bhattacharya, Prabir, Mudur, Sudhir P., Krishnamurthy, Srinivasan
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2011
Subjects
Online AccessGet full text
ISBN9781424497881
1424497884
ISSN0840-7789
DOI10.1109/CCECE.2011.6030630

Cover

Abstract This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM) based global feature. To adapt the traditional global approach of GLRLM -based feature extraction method, a three level partitioning of images has been proposed that enables capturing of local features in terms of global image properties. Local relative features are then calculated as the absolute difference of the global features of each lower layer partition sub-block and that of its corresponding upper layer partition block. Performance of the proposed local relative feature extraction method has been verified by applying it in classifying ultrasound medical images of ovarian abnormalities. Besides, significant improvement has been noticed by comparing the proposed method with traditional GLRLM -based feature extraction method in terms of image classification performance.
AbstractList This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM) based global feature. To adapt the traditional global approach of GLRLM -based feature extraction method, a three level partitioning of images has been proposed that enables capturing of local features in terms of global image properties. Local relative features are then calculated as the absolute difference of the global features of each lower layer partition sub-block and that of its corresponding upper layer partition block. Performance of the proposed local relative feature extraction method has been verified by applying it in classifying ultrasound medical images of ovarian abnormalities. Besides, significant improvement has been noticed by comparing the proposed method with traditional GLRLM -based feature extraction method in terms of image classification performance.
Author Mudur, Sudhir P.
Krishnamurthy, Srinivasan
Sohail, Abu Sayeed Md
Bhattacharya, Prabir
Author_xml – sequence: 1
  givenname: Abu Sayeed Md
  surname: Sohail
  fullname: Sohail, Abu Sayeed Md
  email: a_sohai@cse.concordia.ca
  organization: Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, QC, Canada
– sequence: 2
  givenname: Prabir
  surname: Bhattacharya
  fullname: Bhattacharya, Prabir
  email: bhattapr@ucmail.uc.edu
  organization: Dept. of Comput. Sci., Univ. of Cincinnati, Cincinnati, OH, USA
– sequence: 3
  givenname: Sudhir P.
  surname: Mudur
  fullname: Mudur, Sudhir P.
  email: mudur@cse.concordia.ca
  organization: Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, QC, Canada
– sequence: 4
  givenname: Srinivasan
  surname: Krishnamurthy
  fullname: Krishnamurthy, Srinivasan
  email: srinivasan.krishnamurthy@muhc.mcgill.ca
  organization: Dept. of Obstetrics & Gynecology, R. Victoria Hosp., Montreal, QC, Canada
BookMark eNpVkF1LwzAYhSNOcJv7A3qTP9D6pvloeillTqEiiF6XpHkzIl0rTSvu31t1N149HA48B86KLLq-Q0KuGaSMQXFblttym2bAWKqAg-JwRjZFrpnIhJiZi_N_WbMFWYIWkOS5Li7JKsZ3ABBaiSWpq74xLR2wNWP4RLqrXqqnxJqIjo74NU4DUo_ml3McTDOGvqO-H2jTmhiDP4ZuT6d2rmI_dY4e0IUfZTiYPcYrcuFNG3Fz4pq83W9fy4eket49lndVElgux0SAVwVHrrTPMtkgGG4UeJAu58ikl0x4qTInnJVaWARlTZFho21hjXUNX5ObP29AxPpjmNeHY336h38DJ6Farg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CCECE.2011.6030630
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424497874
1424497892
1424497876
9781424497898
EndPage 001095
ExternalDocumentID 6030630
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-40f693e368f225ce0a3a60f05d73e15f514f562d4db584be06ba92ec8b9babdc3
IEDL.DBID RIE
ISBN 9781424497881
1424497884
ISSN 0840-7789
IngestDate Wed Aug 27 02:43:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-40f693e368f225ce0a3a60f05d73e15f514f562d4db584be06ba92ec8b9babdc3
PageCount 4
ParticipantIDs ieee_primary_6030630
PublicationCentury 2000
PublicationDate 2011-May
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-May
PublicationDecade 2010
PublicationTitle 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE)
PublicationTitleAbbrev CCECE
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004864
ssj0000669182
Score 1.6031692
Snippet This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM)...
SourceID ieee
SourceType Publisher
StartPage 001092
SubjectTerms Biomedical imaging
Feature extraction
Image classification
Kernel
local feature
Support vector machines
Training
Ultrasonic imaging
ultrasound image classification
Title Local relative GLRLM-based texture feature extraction for classifying ultrasound medical images
URI https://ieeexplore.ieee.org/document/6030630
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDCSNqnzsOeopUItQohK3arYPksVtEVtwsCv5xwnLSAGtjhxFMeyfN-d7_uOkFsIbHBNZ54Je4kXMt_3ssQIj6tEQpCxiBvrKI4f4-EkfJhG0wa523JhAKBMPoOOvSzP8vVKFTZU1o0twGXooO_hMnNcrW08BU2nCPhOOirkTjqK24y5hIua1IVeEw9rraeqHdRsGl9007Sf9p20Z_W5H3VXSrMzOCTjesAu2-S1U-Syoz5_aTn-94-OSHtH8KNPW9N1TBqwPCEH37QJW2Q2slaOOq7LB9D70fNo7Fmjp6nNFinWQA2UsqAUm2tHkKCIgamyiHxeEqho8YaPNrZ2E124MyE6X-AetmmTyaD_kg69qhqDN0eIkaOjaWLBgMXc4B6gwM9YFvvGj3TCIIgMIi-DYEqHWiKokeDHMhM9UFwKmUmt2ClpLldLOCOUYdcAXw40-peI0KQIY-zGldIqDhQ_Jy07VbN3J7gxq2bp4u_bl2TfBXptFuIVaebrAq4RKeTyplwiX7F4tx0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHtSLP8D42x48OtjofnRnAqIOYgwk3MjaviZEAQPMg3-9r-sGajx4W7cu25ql3_de3_eVkFvwTHJNpY72W5HjM9d10kjHDpeRAC9lAdcmUOwPwt7IfxwH4wq522hhACAvPoOGOczX8tVCZiZV1gwNwWUYoO8g7vuBVWttMioInrHHt-ZRPrfmUdzUzEU8LmVdGDdxv3R7Ktpeqadx42a73Wl3rLln8cAfO6_kwNM9IP3ylW29yWsjW4uG_Pzl5vjfbzok9a3Ejz5vwOuIVGB-TPa_uRPWyCQxOEet2uUD6H3ykvQdA3uKmnqRbAlUQ24MSrG5tBIJiiyYSsPJp7mEimZveGlldm-iM7sqRKcznMVWdTLqdobtnlPsx-BMkWSsMdTUYcyAhVzjLCDBTVkautoNVMTACzRyL410SvlKIK0R4IYijVsguYhFKpRkJ6Q6X8zhlFCGXT282VMYYSJHE7EfYjcupZKhJ_kZqZmhmrxby41JMUrnf5--Ibu9YT-ZJA-DpwuyZ9O-pibxklTXywyukDesxXX-u3wBfJK6ag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+24th+Canadian+Conference+on+Electrical+and+Computer+Engineering%28CCECE%29&rft.atitle=Local+relative+GLRLM-based+texture+feature+extraction+for+classifying+ultrasound+medical+images&rft.au=Sohail%2C+Abu+Sayeed+Md&rft.au=Bhattacharya%2C+Prabir&rft.au=Mudur%2C+Sudhir+P.&rft.au=Krishnamurthy%2C+Srinivasan&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781424497881&rft.issn=0840-7789&rft.spage=001092&rft.epage=001095&rft_id=info:doi/10.1109%2FCCECE.2011.6030630&rft.externalDocID=6030630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon