Local relative GLRLM-based texture feature extraction for classifying ultrasound medical images
This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM) based global feature. To adapt the traditional global approach of GLRLM -based feature extraction method, a three level partitioning of images...
Saved in:
Published in | 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE) pp. 001092 - 001095 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2011
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424497881 1424497884 |
ISSN | 0840-7789 |
DOI | 10.1109/CCECE.2011.6030630 |
Cover
Abstract | This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM) based global feature. To adapt the traditional global approach of GLRLM -based feature extraction method, a three level partitioning of images has been proposed that enables capturing of local features in terms of global image properties. Local relative features are then calculated as the absolute difference of the global features of each lower layer partition sub-block and that of its corresponding upper layer partition block. Performance of the proposed local relative feature extraction method has been verified by applying it in classifying ultrasound medical images of ovarian abnormalities. Besides, significant improvement has been noticed by comparing the proposed method with traditional GLRLM -based feature extraction method in terms of image classification performance. |
---|---|
AbstractList | This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM) based global feature. To adapt the traditional global approach of GLRLM -based feature extraction method, a three level partitioning of images has been proposed that enables capturing of local features in terms of global image properties. Local relative features are then calculated as the absolute difference of the global features of each lower layer partition sub-block and that of its corresponding upper layer partition block. Performance of the proposed local relative feature extraction method has been verified by applying it in classifying ultrasound medical images of ovarian abnormalities. Besides, significant improvement has been noticed by comparing the proposed method with traditional GLRLM -based feature extraction method in terms of image classification performance. |
Author | Mudur, Sudhir P. Krishnamurthy, Srinivasan Sohail, Abu Sayeed Md Bhattacharya, Prabir |
Author_xml | – sequence: 1 givenname: Abu Sayeed Md surname: Sohail fullname: Sohail, Abu Sayeed Md email: a_sohai@cse.concordia.ca organization: Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, QC, Canada – sequence: 2 givenname: Prabir surname: Bhattacharya fullname: Bhattacharya, Prabir email: bhattapr@ucmail.uc.edu organization: Dept. of Comput. Sci., Univ. of Cincinnati, Cincinnati, OH, USA – sequence: 3 givenname: Sudhir P. surname: Mudur fullname: Mudur, Sudhir P. email: mudur@cse.concordia.ca organization: Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, QC, Canada – sequence: 4 givenname: Srinivasan surname: Krishnamurthy fullname: Krishnamurthy, Srinivasan email: srinivasan.krishnamurthy@muhc.mcgill.ca organization: Dept. of Obstetrics & Gynecology, R. Victoria Hosp., Montreal, QC, Canada |
BookMark | eNpVkF1LwzAYhSNOcJv7A3qTP9D6pvloeillTqEiiF6XpHkzIl0rTSvu31t1N149HA48B86KLLq-Q0KuGaSMQXFblttym2bAWKqAg-JwRjZFrpnIhJiZi_N_WbMFWYIWkOS5Li7JKsZ3ABBaiSWpq74xLR2wNWP4RLqrXqqnxJqIjo74NU4DUo_ml3McTDOGvqO-H2jTmhiDP4ZuT6d2rmI_dY4e0IUfZTiYPcYrcuFNG3Fz4pq83W9fy4eket49lndVElgux0SAVwVHrrTPMtkgGG4UeJAu58ikl0x4qTInnJVaWARlTZFho21hjXUNX5ObP29AxPpjmNeHY336h38DJ6Farg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CCECE.2011.6030630 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781424497874 1424497892 1424497876 9781424497898 |
EndPage | 001095 |
ExternalDocumentID | 6030630 |
Genre | orig-research |
GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-40f693e368f225ce0a3a60f05d73e15f514f562d4db584be06ba92ec8b9babdc3 |
IEDL.DBID | RIE |
ISBN | 9781424497881 1424497884 |
ISSN | 0840-7789 |
IngestDate | Wed Aug 27 02:43:06 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-40f693e368f225ce0a3a60f05d73e15f514f562d4db584be06ba92ec8b9babdc3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6030630 |
PublicationCentury | 2000 |
PublicationDate | 2011-May |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-May |
PublicationDecade | 2010 |
PublicationTitle | 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE) |
PublicationTitleAbbrev | CCECE |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0004864 ssj0000669182 |
Score | 1.6031692 |
Snippet | This paper presents a new approach of extracting local relative texture feature from ultrasound medical images using the Gray Level Run Length Matrix (GLRLM)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 001092 |
SubjectTerms | Biomedical imaging Feature extraction Image classification Kernel local feature Support vector machines Training Ultrasonic imaging ultrasound image classification |
Title | Local relative GLRLM-based texture feature extraction for classifying ultrasound medical images |
URI | https://ieeexplore.ieee.org/document/6030630 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJ1h4tIi3PDCSNqnzsOeopUItQohK3arYPksVtEVtwsCv5xwnLSAGtjhxFMeyfN-d7_uOkFsIbHBNZ54Je4kXMt_3ssQIj6tEQpCxiBvrKI4f4-EkfJhG0wa523JhAKBMPoOOvSzP8vVKFTZU1o0twGXooO_hMnNcrW08BU2nCPhOOirkTjqK24y5hIua1IVeEw9rraeqHdRsGl9007Sf9p20Z_W5H3VXSrMzOCTjesAu2-S1U-Syoz5_aTn-94-OSHtH8KNPW9N1TBqwPCEH37QJW2Q2slaOOq7LB9D70fNo7Fmjp6nNFinWQA2UsqAUm2tHkKCIgamyiHxeEqho8YaPNrZ2E124MyE6X-AetmmTyaD_kg69qhqDN0eIkaOjaWLBgMXc4B6gwM9YFvvGj3TCIIgMIi-DYEqHWiKokeDHMhM9UFwKmUmt2ClpLldLOCOUYdcAXw40-peI0KQIY-zGldIqDhQ_Jy07VbN3J7gxq2bp4u_bl2TfBXptFuIVaebrAq4RKeTyplwiX7F4tx0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHtSLP8D42x48OtjofnRnAqIOYgwk3MjaviZEAQPMg3-9r-sGajx4W7cu25ql3_de3_eVkFvwTHJNpY72W5HjM9d10kjHDpeRAC9lAdcmUOwPwt7IfxwH4wq522hhACAvPoOGOczX8tVCZiZV1gwNwWUYoO8g7vuBVWttMioInrHHt-ZRPrfmUdzUzEU8LmVdGDdxv3R7Ktpeqadx42a73Wl3rLln8cAfO6_kwNM9IP3ylW29yWsjW4uG_Pzl5vjfbzok9a3Ejz5vwOuIVGB-TPa_uRPWyCQxOEet2uUD6H3ykvQdA3uKmnqRbAlUQ24MSrG5tBIJiiyYSsPJp7mEimZveGlldm-iM7sqRKcznMVWdTLqdobtnlPsx-BMkWSsMdTUYcyAhVzjLCDBTVkautoNVMTACzRyL410SvlKIK0R4IYijVsguYhFKpRkJ6Q6X8zhlFCGXT282VMYYSJHE7EfYjcupZKhJ_kZqZmhmrxby41JMUrnf5--Ibu9YT-ZJA-DpwuyZ9O-pibxklTXywyukDesxXX-u3wBfJK6ag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+24th+Canadian+Conference+on+Electrical+and+Computer+Engineering%28CCECE%29&rft.atitle=Local+relative+GLRLM-based+texture+feature+extraction+for+classifying+ultrasound+medical+images&rft.au=Sohail%2C+Abu+Sayeed+Md&rft.au=Bhattacharya%2C+Prabir&rft.au=Mudur%2C+Sudhir+P.&rft.au=Krishnamurthy%2C+Srinivasan&rft.date=2011-05-01&rft.pub=IEEE&rft.isbn=9781424497881&rft.issn=0840-7789&rft.spage=001092&rft.epage=001095&rft_id=info:doi/10.1109%2FCCECE.2011.6030630&rft.externalDocID=6030630 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon |