High-order EDA
In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set of selected individuals and then the estimated distribution model is used to generate new individuals. It needs large population size to con...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3616 - 3621 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
DOI | 10.1109/ICMLC.2009.5212795 |
Cover
Loading…
Abstract | In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set of selected individuals and then the estimated distribution model is used to generate new individuals. It needs large population size to converge to the global optimum. A new algorithm, the high-order EDA, is proposed based on the idea of filter. By the usage of history information, it can converge to the global optimum with high probability even with small population size. Convergence properties are then discussed. We also show the application for constrained optimization problems. |
---|---|
AbstractList | In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set of selected individuals and then the estimated distribution model is used to generate new individuals. It needs large population size to converge to the global optimum. A new algorithm, the high-order EDA, is proposed based on the idea of filter. By the usage of history information, it can converge to the global optimum with high probability even with small population size. Convergence properties are then discussed. We also show the application for constrained optimization problems. |
Author | Qing-Sheng Ren Jin Zeng |
Author_xml | – sequence: 1 surname: Jin Zeng fullname: Jin Zeng organization: Dept. of Math., Shanghai Jiao Tong Univ., Shanghai, China – sequence: 2 surname: Qing-Sheng Ren fullname: Qing-Sheng Ren |
BookMark | eNo1j89Kw0AYxD-xBZsaH0AvvkDS789udvdYYrWFFC8K3kq2u6sRbSXx4tsbsM4chjn8BiaDyeF4iADXhCURusWm3jZ1yYiu1ExsnD6DjBQrJQaFzyF3xv53lgnMmCosSORlCtnIWUfkNF9APgzvOEppNpXM4Grdvb4Vxz7E_nZ1t7yEaWo_hpifcg7P96unel00jw-betkUHRn9XSj0ghWlRCoErTym4LyzXrNYbXVrpB3N1iGJN0btLYcwMi6hD_voZQ43f7tdjHH31Xefbf-zO32TX4YCPLE |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212795 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 3621 |
ExternalDocumentID | 5212795 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-40b3061ff14dd54b0fd9b98b5238585a73a3a3289013b774c82dd0b39f0bdceb3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-40b3061ff14dd54b0fd9b98b5238585a73a3a3289013b774c82dd0b39f0bdceb3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212795 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4196355 |
Snippet | In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3616 |
SubjectTerms | Computer science Constraint optimization Convergence Cybernetics Electronic design automation and methodology Estimation of distribution algorithm (EDA) Filters Genetic algorithms High-order EDA History Machine learning Mathematics Optimization methods |
Title | High-order EDA |
URI | https://ieeexplore.ieee.org/document/5212795 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sOynIdJv4mx48mq5dfyQ5ytyYYsWDg91G0iQgwja0vfjX-5L-EMWD9NIUQvso4cuX977vAVyHXOpEiIhIxQyJDUuIiCQn1nYyVTbtyKzeOXtKF8v4YZWsOnDTamG01q74TPv21uXy1TYv7VHZ2OpMKU-60EXiVmm12vMUaw1OayspN6ZIPFzDvEmYBgSp2KrRdUUUgamxe6rHUSOoCfj4fpo9Tisry_qNP1qvOOSZ9yFrvrkqOHnzy0L6-ecvO8f_BnUIo2-Nn_fcotcRdPRmAP2myYNXr_kB7GetsevHEA5sXQhxfp3e7O52BMv57GW6IHVLBfKK-4QC2aJEjhAaE8ZKJbEMjOKSM4l01CYIBY0EXjb5GEYSd4Y5myiFc7gJpMqReB9Db7Pd6BPwJsaksUGsSxmNmTZc0kCk3AglQkNlfgpDG-x6V7lmrOs4z_5-fA57VZ7GFsJeQK94L_Ulwn0hr9x__gLcYZ8h |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MeVBBptvE3_bg0Wz9neQoc2PTdnjYYLeRNAmI0Il2F_96k_SHKB6kl6YQ2kcJX768930P4NajXEaMBYgLolCoSIRYwCkytpOxMGlHYvTO6TyeLsPHVbRqwV2jhZFS2uIzOTC3NpcvNtnWHJUNjc4U02gHdiMjxi3VWs2JijEHx5WZlB1jTT1syzzfi12kydiqVnYFWENTbfhUjYNaUuPS4WyUJqPSzLJ654_mKxZ7Jh1I668uS05eB9uCD7LPX4aO_w3rCPrfKj_nucGvY2jJvAudus2DU636LhykjbXrRw8OTWUIso6dzvjhvg_LyXgxmqKqqQJ60TuFQvNFrlmCp5QXChGF3FWCckq4JqQmRchwwPRl0o9ewPXeMCO-EHoOVS4XmabeJ9DON7k8BcdXKg6VRruY4JBIRTl2WUwVE8xTmGdn0DPBrt9K34x1Fef5349vYG-6SJN1Mps_XcB-mbUxZbGX0C7et_JKg3_Br-0__wJmt6Jp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=High-order+EDA&rft.au=Jin+Zeng&rft.au=Qing-Sheng+Ren&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=6&rft.spage=3616&rft.epage=3621&rft_id=info:doi/10.1109%2FICMLC.2009.5212795&rft.externalDocID=5212795 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |