High-order EDA

In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set of selected individuals and then the estimated distribution model is used to generate new individuals. It needs large population size to con...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3616 - 3621
Main Authors Jin Zeng, Qing-Sheng Ren
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text
ISBN9781424437023
1424437024
ISSN2160-133X
DOI10.1109/ICMLC.2009.5212795

Cover

Loading…
Abstract In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set of selected individuals and then the estimated distribution model is used to generate new individuals. It needs large population size to converge to the global optimum. A new algorithm, the high-order EDA, is proposed based on the idea of filter. By the usage of history information, it can converge to the global optimum with high probability even with small population size. Convergence properties are then discussed. We also show the application for constrained optimization problems.
AbstractList In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set of selected individuals and then the estimated distribution model is used to generate new individuals. It needs large population size to converge to the global optimum. A new algorithm, the high-order EDA, is proposed based on the idea of filter. By the usage of history information, it can converge to the global optimum with high probability even with small population size. Convergence properties are then discussed. We also show the application for constrained optimization problems.
Author Qing-Sheng Ren
Jin Zeng
Author_xml – sequence: 1
  surname: Jin Zeng
  fullname: Jin Zeng
  organization: Dept. of Math., Shanghai Jiao Tong Univ., Shanghai, China
– sequence: 2
  surname: Qing-Sheng Ren
  fullname: Qing-Sheng Ren
BookMark eNo1j89Kw0AYxD-xBZsaH0AvvkDS789udvdYYrWFFC8K3kq2u6sRbSXx4tsbsM4chjn8BiaDyeF4iADXhCURusWm3jZ1yYiu1ExsnD6DjBQrJQaFzyF3xv53lgnMmCosSORlCtnIWUfkNF9APgzvOEppNpXM4Grdvb4Vxz7E_nZ1t7yEaWo_hpifcg7P96unel00jw-betkUHRn9XSj0ghWlRCoErTym4LyzXrNYbXVrpB3N1iGJN0btLYcwMi6hD_voZQ43f7tdjHH31Xefbf-zO32TX4YCPLE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212795
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 1424437032
9781424437030
EndPage 3621
ExternalDocumentID 5212795
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-40b3061ff14dd54b0fd9b98b5238585a73a3a3289013b774c82dd0b39f0bdceb3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-40b3061ff14dd54b0fd9b98b5238585a73a3a3289013b774c82dd0b39f0bdceb3
PageCount 6
ParticipantIDs ieee_primary_5212795
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4196355
Snippet In this paper, we investigate the usage of history information for estimation of distribution algorithm (EDA). In EDA, the distribution is estimated from a set...
SourceID ieee
SourceType Publisher
StartPage 3616
SubjectTerms Computer science
Constraint optimization
Convergence
Cybernetics
Electronic design automation and methodology
Estimation of distribution algorithm (EDA)
Filters
Genetic algorithms
High-order EDA
History
Machine learning
Mathematics
Optimization methods
Title High-order EDA
URI https://ieeexplore.ieee.org/document/5212795
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sOynIdJv4mx48mq5dfyQ5ytyYYsWDg91G0iQgwja0vfjX-5L-EMWD9NIUQvso4cuX977vAVyHXOpEiIhIxQyJDUuIiCQn1nYyVTbtyKzeOXtKF8v4YZWsOnDTamG01q74TPv21uXy1TYv7VHZ2OpMKU-60EXiVmm12vMUaw1OayspN6ZIPFzDvEmYBgSp2KrRdUUUgamxe6rHUSOoCfj4fpo9Tisry_qNP1qvOOSZ9yFrvrkqOHnzy0L6-ecvO8f_BnUIo2-Nn_fcotcRdPRmAP2myYNXr_kB7GetsevHEA5sXQhxfp3e7O52BMv57GW6IHVLBfKK-4QC2aJEjhAaE8ZKJbEMjOKSM4l01CYIBY0EXjb5GEYSd4Y5myiFc7gJpMqReB9Db7Pd6BPwJsaksUGsSxmNmTZc0kCk3AglQkNlfgpDG-x6V7lmrOs4z_5-fA57VZ7GFsJeQK94L_Ulwn0hr9x__gLcYZ8h
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7MeVBBptvE3_bg0Wz9neQoc2PTdnjYYLeRNAmI0Il2F_96k_SHKB6kl6YQ2kcJX768930P4NajXEaMBYgLolCoSIRYwCkytpOxMGlHYvTO6TyeLsPHVbRqwV2jhZFS2uIzOTC3NpcvNtnWHJUNjc4U02gHdiMjxi3VWs2JijEHx5WZlB1jTT1syzzfi12kydiqVnYFWENTbfhUjYNaUuPS4WyUJqPSzLJ654_mKxZ7Jh1I668uS05eB9uCD7LPX4aO_w3rCPrfKj_nucGvY2jJvAudus2DU636LhykjbXrRw8OTWUIso6dzvjhvg_LyXgxmqKqqQJ60TuFQvNFrlmCp5QXChGF3FWCckq4JqQmRchwwPRl0o9ewPXeMCO-EHoOVS4XmabeJ9DON7k8BcdXKg6VRruY4JBIRTl2WUwVE8xTmGdn0DPBrt9K34x1Fef5349vYG-6SJN1Mps_XcB-mbUxZbGX0C7et_JKg3_Br-0__wJmt6Jp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=High-order+EDA&rft.au=Jin+Zeng&rft.au=Qing-Sheng+Ren&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=6&rft.spage=3616&rft.epage=3621&rft_id=info:doi/10.1109%2FICMLC.2009.5212795&rft.externalDocID=5212795
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon