An Improved kNN Based on Class Contribution and Feature Weighting

Aiming at the problem that the kNN algorithm is susceptible to the choice of k-nearest neighbors and the method of class judgment, this paper propose a kNN algorithm based on class contribution and feature weighting called DCT-kNN. Firstly, using traditional kNN to calculate accuarcy of original dat...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Measuring Technology and Mechatronics Automation (Print) pp. 313 - 316
Main Authors Huang, Jie, Wei, Yongqing, Yi, Jing, Liu, Mengdi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aiming at the problem that the kNN algorithm is susceptible to the choice of k-nearest neighbors and the method of class judgment, this paper propose a kNN algorithm based on class contribution and feature weighting called DCT-kNN. Firstly, using traditional kNN to calculate accuarcy of original dataset and of the data lack of each dimension feature successively. Then by comparing two accuarcies to weight the feature and to calculate the weighted distance, by which the k-nearest neighbors are obtained. Finally, by using class contribution which combines the number of k-nearest neighbors and their mean distance, the final labels of the samples are obtained. The comparison experiment of UCI datasets showed a certain degree of improvement in classification accuracy of the proposed method.
AbstractList Aiming at the problem that the kNN algorithm is susceptible to the choice of k-nearest neighbors and the method of class judgment, this paper propose a kNN algorithm based on class contribution and feature weighting called DCT-kNN. Firstly, using traditional kNN to calculate accuarcy of original dataset and of the data lack of each dimension feature successively. Then by comparing two accuarcies to weight the feature and to calculate the weighted distance, by which the k-nearest neighbors are obtained. Finally, by using class contribution which combines the number of k-nearest neighbors and their mean distance, the final labels of the samples are obtained. The comparison experiment of UCI datasets showed a certain degree of improvement in classification accuracy of the proposed method.
Author Huang, Jie
Liu, Mengdi
Wei, Yongqing
Yi, Jing
Author_xml – sequence: 1
  givenname: Jie
  surname: Huang
  fullname: Huang, Jie
  organization: School of Information Science & Engineering, Shandong Normal University, Jinan ,Shandong,250358,China
– sequence: 2
  givenname: Yongqing
  surname: Wei
  fullname: Wei, Yongqing
  email: 13864155372@163.com
  organization: Basic Education Dept., Shandong Police College, Jinan , Shandong,250014,China
– sequence: 3
  givenname: Jing
  surname: Yi
  fullname: Yi, Jing
  organization: School of Computer Science & Technology, Shandong Jianzhu University, Jinan ,Shandong,250014,China
– sequence: 4
  givenname: Mengdi
  surname: Liu
  fullname: Liu, Mengdi
  organization: School of Information Science & Engineering, Shandong Normal University, Jinan ,Shandong,250358,China
BookMark eNotjNFKwzAYRqMoOGcfQLzJC7Tmz980yWUtTgvbvJl4OZImndEtHW0n7O0t6NU5HD6-W3IVu-gJuQeWATD9WFerzarMOAOVMcYUXpBESwUCVSEAcnVJZhyETCeFG5IMw9c0Q1BKSz4jZRlpfTj23Y939Hu9pk9mmKyLtNqbYaBVF8c-2NMYpmSiowtvxlPv6YcPu88xxN0duW7NfvDJP-fkffG8qV7T5dtLXZXLNIAUY4qtN54blCCKpm0dKGelxEaoQnN0qrFcqNzappHCOq6dNIJLZrnTjkHucE4e_n6D93577MPB9OetQpSoc_wFXrdMAw
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMTMA.2018.00083
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9781538651148
1538651149
EISSN 2157-1481
EndPage 316
ExternalDocumentID 8337394
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-3feae2a37156cffd18db773c586923d8cb2584bbcc75bd29d7a5270b2d9d014d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:37:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3feae2a37156cffd18db773c586923d8cb2584bbcc75bd29d7a5270b2d9d014d3
PageCount 4
ParticipantIDs ieee_primary_8337394
PublicationCentury 2000
PublicationDate 2018-Feb
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb
PublicationDecade 2010
PublicationTitle International Conference on Measuring Technology and Mechatronics Automation (Print)
PublicationTitleAbbrev ICMTMA
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188972
Score 1.8256408
Snippet Aiming at the problem that the kNN algorithm is susceptible to the choice of k-nearest neighbors and the method of class judgment, this paper propose a kNN...
SourceID ieee
SourceType Publisher
StartPage 313
SubjectTerms class contribution
Classification algorithms
Computer science
Data mining
Euclidean distance
feature weighting
kNN
Liver
Training
Title An Improved kNN Based on Class Contribution and Feature Weighting
URI https://ieeexplore.ieee.org/document/8337394
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na8JAEB3UU3uxVUu_2UOPjR-bjbt7tFKxhUgPSr3JfsxCEWKReOmv724SrZQeegiEHJKwk_DezL6ZB_BAnfOoqZNIcacjZjVGgjmMjFVUGh_ygQmNwulsOF2w12WyrMHjoRcGEQvxGXbDabGXbzdmF0plPRHHPJasDnWfuJW9Wod6iv82heS02rgc9GXvZZzO01FQbwW5ZD8MBjwyUCnwY9KEdP_kUjay7u5y3TVfv4Yy_vfVzqDz06lH3g4YdA41zFrQ3Fs1kOrPbcHp0dzBNoxGGSmrCWjJejYjTx7LLNlkpPDIJGFk1d4Ii6jMkkAUd1sk70Uh1d-jA4vJ83w8jSovhejDE4Q8ih0qpCrmPl8zztmBsJrz2CRi6CmeFUZTT0W0NoYn2lJpuUoo72tqpfVZlI0voJFtMrwEotxQMuuEPwxjniKgYZRK5aFfGoPiCtphfVaf5biMVbU0139fvoGTEKFSCH0LjXy7wzuP87m-LwL8DS8jqT0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BPKgXFDD-tgePDli30faIRALKFg8QuZH-TAzJMGS7-NfbbgOJ8eBhybLDuvSt-b6-fu99AA_YGIuaIvI4McILldAeDY32pOKYSRtyX7pC4Tjpj-fhyyJa1OBxVwujtS7EZ7rjbouzfLWWuUuVdWkQkICFB3BocT_yy2qtXUbF_p2UEVwdXfo91p0M41k8cPotJ5jsudaAexYqBYKMGhBvxy6FI6tOnomO_PrVlvG_H3cK7Z9aPfS2Q6EzqOm0CY2tWQOq1m4TTvY6D7ZgMEhRmU_QCq2SBD1ZNFNonaLCJRO5plVbKyzEU4UcVcw3Gr0XqVT7jjbMR8-z4dir3BS8D0sRMi8wmmvMA2J3bNIY5VMlCAlkRPuW5CkqBbZkRAgpSSQUZorwCJOewIopu49SwTnU03WqLwBx02ehMtReMgwtSdAyxJhxC_5MSk0voeXmZ_lZNsxYVlNz9ffjezgaz-LpcjpJXq_h2EWrlEXfQD3b5PrWon4m7opgfwM0S6yG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Measuring+Technology+and+Mechatronics+Automation+%28Print%29&rft.atitle=An+Improved+kNN+Based+on+Class+Contribution+and+Feature+Weighting&rft.au=Huang%2C+Jie&rft.au=Wei%2C+Yongqing&rft.au=Yi%2C+Jing&rft.au=Liu%2C+Mengdi&rft.date=2018-02-01&rft.pub=IEEE&rft.eissn=2157-1481&rft.spage=313&rft.epage=316&rft_id=info:doi/10.1109%2FICMTMA.2018.00083&rft.externalDocID=8337394