Online state and parameter estimation of the Li-ion battery in a Bayesian framework

Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical importance. A reliable battery state estimation scheme is an integral part of such a BMS. Complicated nature of battery dynamics, weak obser...

Full description

Saved in:
Bibliographic Details
Published in2013 American Control Conference pp. 4693 - 4698
Main Authors Samadi, M. F., Alavi, S. M. Mahdi, Saif, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical importance. A reliable battery state estimation scheme is an integral part of such a BMS. Complicated nature of battery dynamics, weak observability, lack of knowledge about the degradation mechanisms of these batteries, etc has made their state estimation a challenging task. Among the published works on Li-ion battery estimation, a subject that has not received a great deal of attention is parameter estimation of the battery. Parameter estimation has a direct impact on both state of charge and state of health estimation of the battery. Most of the works in the field of battery estimation are built upon the known parameters of the battery whereas in reality these parameters change over-time and may not be known a priori, particularly for aged batteries. This work tackles the problem of parameter and state estimation of lithium-ion batteries from a model-based perspective using a multi-rate particle filter. This filter is applicable to the full-electrochemical of the battery without any restrictive assumption or simplification of the model equations. The filter is proposed in a multi-rate structure in order to address the run-time of the process and computational load of the algorithm. The simulation studies demonstrate the effectiveness of the proposed algorithm.
AbstractList Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical importance. A reliable battery state estimation scheme is an integral part of such a BMS. Complicated nature of battery dynamics, weak observability, lack of knowledge about the degradation mechanisms of these batteries, etc has made their state estimation a challenging task. Among the published works on Li-ion battery estimation, a subject that has not received a great deal of attention is parameter estimation of the battery. Parameter estimation has a direct impact on both state of charge and state of health estimation of the battery. Most of the works in the field of battery estimation are built upon the known parameters of the battery whereas in reality these parameters change over-time and may not be known a priori, particularly for aged batteries. This work tackles the problem of parameter and state estimation of lithium-ion batteries from a model-based perspective using a multi-rate particle filter. This filter is applicable to the full-electrochemical of the battery without any restrictive assumption or simplification of the model equations. The filter is proposed in a multi-rate structure in order to address the run-time of the process and computational load of the algorithm. The simulation studies demonstrate the effectiveness of the proposed algorithm.
Author Alavi, S. M. Mahdi
Saif, M.
Samadi, M. F.
Author_xml – sequence: 1
  givenname: M. F.
  surname: Samadi
  fullname: Samadi, M. F.
  email: fsamadi@uwindsor.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada
– sequence: 2
  givenname: S. M. Mahdi
  surname: Alavi
  fullname: Alavi, S. M. Mahdi
  email: malavi@uwindsor.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada
– sequence: 3
  givenname: M.
  surname: Saif
  fullname: Saif, M.
  email: msaif@uwindsor.ca
  organization: Fac. of Eng., Univ. of Windsor, Windsor, ON, Canada
BookMark eNo1UEtrwzAY81gHa7reB7v4DyTzI7bjYxf2gkAP287lc_KZeWudkhhG_v1S1p2EEBKSMrKIfURCbjkrOGf2flPXhWBcFlpVTGl5QdbWVLw01jJulLwk2T8xekGWzJQy55rba5KN4xdj3FrNluRtG_chIh0TJKQQO3qEAQ6YcKA4pnCAFPpIe0_TJ9Im5CfmIM36REOkQB9gwjFApP7k--mH7xty5WE_4vqMK_Lx9Phev-TN9vm13jR5mBumXHZOV6XSQqFnrRKCgyhb6FphhBPeSuEqXSoA7bx3nnmuWoVdZzrjpJr3rMjdX25AxN1xmMsO0-58iPwFk1dUNg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ACC.2013.6580563
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781479901753
147990175X
1479901784
9781479901784
EndPage 4698
ExternalDocumentID 6580563
Genre orig-research
GroupedDBID -~X
23M
29O
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-3db6845625ef0c5221a24cadc272b2f932b8645aa6bffbf0f15c5edd7d7b35743
IEDL.DBID RIE
ISBN 1479901776
9781479901777
ISSN 0743-1619
IngestDate Wed Aug 27 04:22:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3db6845625ef0c5221a24cadc272b2f932b8645aa6bffbf0f15c5edd7d7b35743
PageCount 6
ParticipantIDs ieee_primary_6580563
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 American Control Conference
PublicationTitleAbbrev ACC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0019960
ssj0001124340
Score 1.6394348
Snippet Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical...
SourceID ieee
SourceType Publisher
StartPage 4693
SubjectTerms Batteries
Electrodes
Equations
Estimation
Mathematical model
Parameter estimation
Particle filters
Title Online state and parameter estimation of the Li-ion battery in a Bayesian framework
URI https://ieeexplore.ieee.org/document/6580563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JS8NAFMeHtie9uLTizhw8mjazZKY5arEUURG00FuZFYqYiqSH-umdN0nqggdvmVySPAJv_f8eQhdeUeY4t4ljHqpVuYBCE0kIy7xTCho3kfb5ICZTfjvLZi10udHCOOfi8Jnrw2Xs5dulWUGpbBC8ZfDXrI3aIXGrtFpf9ZTgqBhwS-oOAlBHNgjOkCVEUZeELpCUomE91WfZ9C_TfHA1GsHAF-vXD_uxdSU6nfEOum9et5o1eemvSt03H79Ijv_9nl3U-5L34ceN49pDLVfso-1vZMIueqoQpDjqjbAqLAZG-CvMzmDgclSCR7z0OASQ-G6RwElHVucaLwqs8LVaOxBoYt-Mf_XQdHzzPJok9f6FZBGCijJhVothzJCcT00I1Iii3ChrqKSa-hD56aHgmVJCe6996klmMmettFKzLBj-AHWKZeEOESZKUi9TLYjNeZbS3HBtuXGMMKF0mh-hLphn_lYhNua1ZY7_vn2Ctmi1lSJJySnqlO8rdxZig1Kfx5_iE7OcsUQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ27T8MwEMatUgZg4dEi3nhgJG38bkaoQAXaColW6lbZsS1ViBShdCh_PbaTtIAY2OIsSaxI3_nuvt8BcGUlJoZSHRlifbYq4T7RhCJEmDVS-sJNoH0OeW9MHydsUgPXKy-MMSY0n5mWvwy1fD1PFz5V1nZq6fSabIBNp_sMFW6tdUbFSRXx5JKyhuC5IysIpzsnBFuX8HUgIXhFeyrXoqpgxkn7ptv1LV-kVT7ux9yVIDv3u2BQvXDRbfLaWuSqlX7-Yjn-94v2QHNt8IPPK-naBzWTHYCdb2zCBngpIKQwOI6gzDT0lPA33z0DPZmjsDzCuYUuhIT9WeRXKtA6l3CWQQlv5dJ4iya0VQNYE4zv70bdXlROYIhmLqzII6IV74QzkrFx6kI1JDFNpU6xwApbF_upDqdMSq6sVTa2iKXMaC20UIS5jT8E9WyemSMAkRTYilhxpBPKYpykVGmaGoIIlypOjkHDb8_0vYBsTMudOfn79iXY6o0G_Wn_Yfh0CrZxMaMiitEZqOcfC3PuIoVcXYQf5Asp57SN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+American+Control+Conference&rft.atitle=Online+state+and+parameter+estimation+of+the+Li-ion+battery+in+a+Bayesian+framework&rft.au=Samadi%2C+M.+F.&rft.au=Alavi%2C+S.+M.+Mahdi&rft.au=Saif%2C+M.&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479901777&rft.issn=0743-1619&rft.spage=4693&rft.epage=4698&rft_id=info:doi/10.1109%2FACC.2013.6580563&rft.externalDocID=6580563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-1619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-1619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-1619&client=summon