Online state and parameter estimation of the Li-ion battery in a Bayesian framework
Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical importance. A reliable battery state estimation scheme is an integral part of such a BMS. Complicated nature of battery dynamics, weak obser...
Saved in:
Published in | 2013 American Control Conference pp. 4693 - 4698 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical importance. A reliable battery state estimation scheme is an integral part of such a BMS. Complicated nature of battery dynamics, weak observability, lack of knowledge about the degradation mechanisms of these batteries, etc has made their state estimation a challenging task. Among the published works on Li-ion battery estimation, a subject that has not received a great deal of attention is parameter estimation of the battery. Parameter estimation has a direct impact on both state of charge and state of health estimation of the battery. Most of the works in the field of battery estimation are built upon the known parameters of the battery whereas in reality these parameters change over-time and may not be known a priori, particularly for aged batteries. This work tackles the problem of parameter and state estimation of lithium-ion batteries from a model-based perspective using a multi-rate particle filter. This filter is applicable to the full-electrochemical of the battery without any restrictive assumption or simplification of the model equations. The filter is proposed in a multi-rate structure in order to address the run-time of the process and computational load of the algorithm. The simulation studies demonstrate the effectiveness of the proposed algorithm. |
---|---|
AbstractList | Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical importance. A reliable battery state estimation scheme is an integral part of such a BMS. Complicated nature of battery dynamics, weak observability, lack of knowledge about the degradation mechanisms of these batteries, etc has made their state estimation a challenging task. Among the published works on Li-ion battery estimation, a subject that has not received a great deal of attention is parameter estimation of the battery. Parameter estimation has a direct impact on both state of charge and state of health estimation of the battery. Most of the works in the field of battery estimation are built upon the known parameters of the battery whereas in reality these parameters change over-time and may not be known a priori, particularly for aged batteries. This work tackles the problem of parameter and state estimation of lithium-ion batteries from a model-based perspective using a multi-rate particle filter. This filter is applicable to the full-electrochemical of the battery without any restrictive assumption or simplification of the model equations. The filter is proposed in a multi-rate structure in order to address the run-time of the process and computational load of the algorithm. The simulation studies demonstrate the effectiveness of the proposed algorithm. |
Author | Alavi, S. M. Mahdi Saif, M. Samadi, M. F. |
Author_xml | – sequence: 1 givenname: M. F. surname: Samadi fullname: Samadi, M. F. email: fsamadi@uwindsor.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada – sequence: 2 givenname: S. M. Mahdi surname: Alavi fullname: Alavi, S. M. Mahdi email: malavi@uwindsor.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Windsor, Windsor, ON, Canada – sequence: 3 givenname: M. surname: Saif fullname: Saif, M. email: msaif@uwindsor.ca organization: Fac. of Eng., Univ. of Windsor, Windsor, ON, Canada |
BookMark | eNo1UEtrwzAY81gHa7reB7v4DyTzI7bjYxf2gkAP287lc_KZeWudkhhG_v1S1p2EEBKSMrKIfURCbjkrOGf2flPXhWBcFlpVTGl5QdbWVLw01jJulLwk2T8xekGWzJQy55rba5KN4xdj3FrNluRtG_chIh0TJKQQO3qEAQ6YcKA4pnCAFPpIe0_TJ9Im5CfmIM36REOkQB9gwjFApP7k--mH7xty5WE_4vqMK_Lx9Phev-TN9vm13jR5mBumXHZOV6XSQqFnrRKCgyhb6FphhBPeSuEqXSoA7bx3nnmuWoVdZzrjpJr3rMjdX25AxN1xmMsO0-58iPwFk1dUNg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ACC.2013.6580563 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781479901753 147990175X 1479901784 9781479901784 |
EndPage | 4698 |
ExternalDocumentID | 6580563 |
Genre | orig-research |
GroupedDBID | -~X 23M 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ AFFNX ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-3db6845625ef0c5221a24cadc272b2f932b8645aa6bffbf0f15c5edd7d7b35743 |
IEDL.DBID | RIE |
ISBN | 1479901776 9781479901777 |
ISSN | 0743-1619 |
IngestDate | Wed Aug 27 04:22:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-3db6845625ef0c5221a24cadc272b2f932b8645aa6bffbf0f15c5edd7d7b35743 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6580563 |
PublicationCentury | 2000 |
PublicationDate | 2013-June |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
PublicationDecade | 2010 |
PublicationTitle | 2013 American Control Conference |
PublicationTitleAbbrev | ACC |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0019960 ssj0001124340 |
Score | 1.6394348 |
Snippet | Due to an ever-growing role of lithium-ion batteries in industry, particularly automotive industry, an effective battery management system (BMS) is of critical... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4693 |
SubjectTerms | Batteries Electrodes Equations Estimation Mathematical model Parameter estimation Particle filters |
Title | Online state and parameter estimation of the Li-ion battery in a Bayesian framework |
URI | https://ieeexplore.ieee.org/document/6580563 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1JS8NAFMeHtie9uLTizhw8mjazZKY5arEUURG00FuZFYqYiqSH-umdN0nqggdvmVySPAJv_f8eQhdeUeY4t4ljHqpVuYBCE0kIy7xTCho3kfb5ICZTfjvLZi10udHCOOfi8Jnrw2Xs5dulWUGpbBC8ZfDXrI3aIXGrtFpf9ZTgqBhwS-oOAlBHNgjOkCVEUZeELpCUomE91WfZ9C_TfHA1GsHAF-vXD_uxdSU6nfEOum9et5o1eemvSt03H79Ijv_9nl3U-5L34ceN49pDLVfso-1vZMIueqoQpDjqjbAqLAZG-CvMzmDgclSCR7z0OASQ-G6RwElHVucaLwqs8LVaOxBoYt-Mf_XQdHzzPJok9f6FZBGCijJhVothzJCcT00I1Iii3ChrqKSa-hD56aHgmVJCe6996klmMmettFKzLBj-AHWKZeEOESZKUi9TLYjNeZbS3HBtuXGMMKF0mh-hLphn_lYhNua1ZY7_vn2Ctmi1lSJJySnqlO8rdxZig1Kfx5_iE7OcsUQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ27T8MwEMatUgZg4dEi3nhgJG38bkaoQAXaColW6lbZsS1ViBShdCh_PbaTtIAY2OIsSaxI3_nuvt8BcGUlJoZSHRlifbYq4T7RhCJEmDVS-sJNoH0OeW9MHydsUgPXKy-MMSY0n5mWvwy1fD1PFz5V1nZq6fSabIBNp_sMFW6tdUbFSRXx5JKyhuC5IysIpzsnBFuX8HUgIXhFeyrXoqpgxkn7ptv1LV-kVT7ux9yVIDv3u2BQvXDRbfLaWuSqlX7-Yjn-94v2QHNt8IPPK-naBzWTHYCdb2zCBngpIKQwOI6gzDT0lPA33z0DPZmjsDzCuYUuhIT9WeRXKtA6l3CWQQlv5dJ4iya0VQNYE4zv70bdXlROYIhmLqzII6IV74QzkrFx6kI1JDFNpU6xwApbF_upDqdMSq6sVTa2iKXMaC20UIS5jT8E9WyemSMAkRTYilhxpBPKYpykVGmaGoIIlypOjkHDb8_0vYBsTMudOfn79iXY6o0G_Wn_Yfh0CrZxMaMiitEZqOcfC3PuIoVcXYQf5Asp57SN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+American+Control+Conference&rft.atitle=Online+state+and+parameter+estimation+of+the+Li-ion+battery+in+a+Bayesian+framework&rft.au=Samadi%2C+M.+F.&rft.au=Alavi%2C+S.+M.+Mahdi&rft.au=Saif%2C+M.&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479901777&rft.issn=0743-1619&rft.spage=4693&rft.epage=4698&rft_id=info:doi/10.1109%2FACC.2013.6580563&rft.externalDocID=6580563 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-1619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-1619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-1619&client=summon |