A two level approach for scene recognition

Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to both binary (outdoor-indoor) and multiple category of scene classification. We first learn mixture models for 20 basic classes of local image co...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 688 - 695 vol. 1
Main Authors Le Lu, Toyama, K., Hager, G.D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to both binary (outdoor-indoor) and multiple category of scene classification. We first learn mixture models for 20 basic classes of local image content based on color and texture information. Once trained, these models are applied to a test image, and produce 20 probability density response maps (PDRM) indicating the likelihood that each image region was produced by each class. We then extract some very simple features from those PDRMs, and use them to train a bagged LDA classifier for 10 scene categories. For this process, no explicit region segmentation or spatial context model are computed. To test this classification system, we created a labeled database of 1500 photos taken under very different environment and lighting conditions, using different cameras, and from 43 persons over 5 years. The classification rate of outdoor-indoor classification is 93.8%, and the classification rate for 10 scene categories is 90.1%. As a byproduct, local image patches can be contextually labeled into the 20 basic material classes by using loopy belief propagation (Yedidia et al., 2001) as an anisotropic filter on PDRMs, producing an image-level segmentation if desired.
AbstractList Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to both binary (outdoor-indoor) and multiple category of scene classification. We first learn mixture models for 20 basic classes of local image content based on color and texture information. Once trained, these models are applied to a test image, and produce 20 probability density response maps (PDRM) indicating the likelihood that each image region was produced by each class. We then extract some very simple features from those PDRMs, and use them to train a bagged LDA classifier for 10 scene categories. For this process, no explicit region segmentation or spatial context model are computed. To test this classification system, we created a labeled database of 1500 photos taken under very different environment and lighting conditions, using different cameras, and from 43 persons over 5 years. The classification rate of outdoor-indoor classification is 93.8%, and the classification rate for 10 scene categories is 90.1%. As a byproduct, local image patches can be contextually labeled into the 20 basic material classes by using loopy belief propagation (Yedidia et al., 2001) as an anisotropic filter on PDRMs, producing an image-level segmentation if desired.
Author Toyama, K.
Hager, G.D.
Le Lu
Author_xml – sequence: 1
  surname: Le Lu
  fullname: Le Lu
  organization: Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 2
  givenname: K.
  surname: Toyama
  fullname: Toyama, K.
– sequence: 3
  givenname: G.D.
  surname: Hager
  fullname: Hager, G.D.
BookMark eNpNjE1LxDAUAIOu4O66N29echZak7wkLzkuxS9YUES9LmnyqpXalLYo_nsFPTiXOQzMii363BNjp1KUUgp_UT3fP5RKCFMaecCWUlgorJf-kK0EWm8UoFKLf-GYbabpTfwAHpxWS3a-5fNn5h19UMfDMIw5xFfe5JFPkXriI8X80rdzm_sTdtSEbqLNn9fs6erysbopdnfXt9V2V7QSzVxAjLV1YJuojWlQGKlSbSJqZ9EFYTBQSh6hUT7FKF2yKWKNUjtF2gsNa3b2-22JaD-M7XsYv_ZSWwQw8A0wdEOR
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.51
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 695 vol. 1
ExternalDocumentID 1467335
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-3ccb6836fc455f70512db5c748678a057aedd973f29dcc18d6dc7b71482e49043
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-3ccb6836fc455f70512db5c748678a057aedd973f29dcc18d6dc7b71482e49043
ParticipantIDs ieee_primary_1467335
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.6998563
Snippet Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to...
SourceID ieee
SourceType Publisher
StartPage 688
SubjectTerms Belief propagation
Cameras
Context modeling
Data mining
Image databases
Image segmentation
Layout
Linear discriminant analysis
Spatial databases
System testing
Title A two level approach for scene recognition
URI https://ieeexplore.ieee.org/document/1467335
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjxVbcU3e_AkbptkH8kepViKUClipbeSfYEoiWiC4K93Ny9FPHjLTi7JsMN88_oG4CINrXOzKsFBLAmmKiBYMEOw8xY2VMRhcu3zHcs7vljT2w3b9OCqm4UxxlTNZ2biH6tavs5V6VNlU2_VhLA-9F3gVs9qdfkUP2OaNGGePxMX2XDRVRQiv42lqnxygrkIRR3CC-ZfRA0TT3sWXYe8mM4eV_d16sXXMn9sYKkc0HwIy_bT676T50lZyIn6_MXq-N9_24Xx96gfWnVObA96JtuHYYNNUWP5707Urn9oZSO4vEbFR45efNsRarnJkQPByDNEGdT1JuXZGNbzm4fZAjerF_CTwxMFJkpJnhBuFWXMxs5yIy2Zij0_X5I6jJcarUVMbCS0UmGiuVaxjD2pqKEioOQABlmemUNADn8lXAXMWJ1SnWopnfaVA5pUWmolP4KR18b2tWbX2DaKOP5bfAI7FXlqlQQ5hUHxVpozBwsKeV7dhy8EpqzG
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB60HvRUn_h2D3oR0qbZZJM9eBAfVG1LESu91ewjIEoiNqXob_Gv-N-czUsRrwVv2QkEMrPJfDuPbwAOw1aEblYGlu0LarnSphb3NLXQW0QtSRGTKxPv6PZYe-BeD73hHHxUvTBa66z4TDfMZZbLV4mcmFBZ03zVlJYllDf6bYoHtPHJ1Tla88hxLi_uztpWMUPAekTHmFpUSsECyiLpel7k4xZ0lPCkb4jmghDBSqiV4j6NHK6kbAWKKekL37BjapfbLsXnzsMC4gzPybvDqgiO6WoNioOlWVM8SzFe5TAcM_8ly7UyajHe4nnQgHvmhlNw_5RrXtXk8-bZff82D_aY7OmPmS-Zy7usw2eprLzS5akxSUVDvv_ikfyv2lyG9e9mRtKv3PQKzOl4FeoF-ibFv22MonLARSlbg-NTkk4T8mwKq0jJvk4Q5hPDgaVJVX2VxOswmMmrbEAtTmK9CQQRZsCk7elIha4KlRBobYlQ2hWRGwm2BWtG-6OXnD9kVCh--2_xASy277qdUeeqd7MDSxlVbBby2YVa-jrRewiCUrGf7UUCD7M21xc-gwnK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=A+two+level+approach+for+scene+recognition&rft.au=Le+Lu&rft.au=Toyama%2C+K.&rft.au=Hager%2C+G.D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=688&rft.epage=695+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.51&rft.externalDocID=1467335
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon