A two level approach for scene recognition
Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to both binary (outdoor-indoor) and multiple category of scene classification. We first learn mixture models for 20 basic classes of local image co...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 688 - 695 vol. 1 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to both binary (outdoor-indoor) and multiple category of scene classification. We first learn mixture models for 20 basic classes of local image content based on color and texture information. Once trained, these models are applied to a test image, and produce 20 probability density response maps (PDRM) indicating the likelihood that each image region was produced by each class. We then extract some very simple features from those PDRMs, and use them to train a bagged LDA classifier for 10 scene categories. For this process, no explicit region segmentation or spatial context model are computed. To test this classification system, we created a labeled database of 1500 photos taken under very different environment and lighting conditions, using different cameras, and from 43 persons over 5 years. The classification rate of outdoor-indoor classification is 93.8%, and the classification rate for 10 scene categories is 90.1%. As a byproduct, local image patches can be contextually labeled into the 20 basic material classes by using loopy belief propagation (Yedidia et al., 2001) as an anisotropic filter on PDRMs, producing an image-level segmentation if desired. |
---|---|
AbstractList | Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to both binary (outdoor-indoor) and multiple category of scene classification. We first learn mixture models for 20 basic classes of local image content based on color and texture information. Once trained, these models are applied to a test image, and produce 20 probability density response maps (PDRM) indicating the likelihood that each image region was produced by each class. We then extract some very simple features from those PDRMs, and use them to train a bagged LDA classifier for 10 scene categories. For this process, no explicit region segmentation or spatial context model are computed. To test this classification system, we created a labeled database of 1500 photos taken under very different environment and lighting conditions, using different cameras, and from 43 persons over 5 years. The classification rate of outdoor-indoor classification is 93.8%, and the classification rate for 10 scene categories is 90.1%. As a byproduct, local image patches can be contextually labeled into the 20 basic material classes by using loopy belief propagation (Yedidia et al., 2001) as an anisotropic filter on PDRMs, producing an image-level segmentation if desired. |
Author | Toyama, K. Hager, G.D. Le Lu |
Author_xml | – sequence: 1 surname: Le Lu fullname: Le Lu organization: Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA – sequence: 2 givenname: K. surname: Toyama fullname: Toyama, K. – sequence: 3 givenname: G.D. surname: Hager fullname: Hager, G.D. |
BookMark | eNpNjE1LxDAUAIOu4O66N29echZak7wkLzkuxS9YUES9LmnyqpXalLYo_nsFPTiXOQzMii363BNjp1KUUgp_UT3fP5RKCFMaecCWUlgorJf-kK0EWm8UoFKLf-GYbabpTfwAHpxWS3a-5fNn5h19UMfDMIw5xFfe5JFPkXriI8X80rdzm_sTdtSEbqLNn9fs6erysbopdnfXt9V2V7QSzVxAjLV1YJuojWlQGKlSbSJqZ9EFYTBQSh6hUT7FKF2yKWKNUjtF2gsNa3b2-22JaD-M7XsYv_ZSWwQw8A0wdEOR |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.51 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 695 vol. 1 |
ExternalDocumentID | 1467335 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-3ccb6836fc455f70512db5c748678a057aedd973f29dcc18d6dc7b71482e49043 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-3ccb6836fc455f70512db5c748678a057aedd973f29dcc18d6dc7b71482e49043 |
ParticipantIDs | ieee_primary_1467335 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.6998563 |
Snippet | Classifying pictures into one of several semantic categories is a classical image understanding problem. In this paper, we present a stratified approach to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 688 |
SubjectTerms | Belief propagation Cameras Context modeling Data mining Image databases Image segmentation Layout Linear discriminant analysis Spatial databases System testing |
Title | A two level approach for scene recognition |
URI | https://ieeexplore.ieee.org/document/1467335 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjxVbcU3e_AkbptkH8kepViKUClipbeSfYEoiWiC4K93Ny9FPHjLTi7JsMN88_oG4CINrXOzKsFBLAmmKiBYMEOw8xY2VMRhcu3zHcs7vljT2w3b9OCqm4UxxlTNZ2biH6tavs5V6VNlU2_VhLA-9F3gVs9qdfkUP2OaNGGePxMX2XDRVRQiv42lqnxygrkIRR3CC-ZfRA0TT3sWXYe8mM4eV_d16sXXMn9sYKkc0HwIy_bT676T50lZyIn6_MXq-N9_24Xx96gfWnVObA96JtuHYYNNUWP5707Urn9oZSO4vEbFR45efNsRarnJkQPByDNEGdT1JuXZGNbzm4fZAjerF_CTwxMFJkpJnhBuFWXMxs5yIy2Zij0_X5I6jJcarUVMbCS0UmGiuVaxjD2pqKEioOQABlmemUNADn8lXAXMWJ1SnWopnfaVA5pUWmolP4KR18b2tWbX2DaKOP5bfAI7FXlqlQQ5hUHxVpozBwsKeV7dhy8EpqzG |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB60HvRUn_h2D3oR0qbZZJM9eBAfVG1LESu91ewjIEoiNqXob_Gv-N-czUsRrwVv2QkEMrPJfDuPbwAOw1aEblYGlu0LarnSphb3NLXQW0QtSRGTKxPv6PZYe-BeD73hHHxUvTBa66z4TDfMZZbLV4mcmFBZ03zVlJYllDf6bYoHtPHJ1Tla88hxLi_uztpWMUPAekTHmFpUSsECyiLpel7k4xZ0lPCkb4jmghDBSqiV4j6NHK6kbAWKKekL37BjapfbLsXnzsMC4gzPybvDqgiO6WoNioOlWVM8SzFe5TAcM_8ly7UyajHe4nnQgHvmhlNw_5RrXtXk8-bZff82D_aY7OmPmS-Zy7usw2eprLzS5akxSUVDvv_ikfyv2lyG9e9mRtKv3PQKzOl4FeoF-ibFv22MonLARSlbg-NTkk4T8mwKq0jJvk4Q5hPDgaVJVX2VxOswmMmrbEAtTmK9CQQRZsCk7elIha4KlRBobYlQ2hWRGwm2BWtG-6OXnD9kVCh--2_xASy277qdUeeqd7MDSxlVbBby2YVa-jrRewiCUrGf7UUCD7M21xc-gwnK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=A+two+level+approach+for+scene+recognition&rft.au=Le+Lu&rft.au=Toyama%2C+K.&rft.au=Hager%2C+G.D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=688&rft.epage=695+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.51&rft.externalDocID=1467335 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |