GPU accelerated extraction of sparse Granger causality patterns
Resting-state functional MRI, which provides a means to estimate the entire brain functional connectivity, has recently received a considerable amount of interest. This modality is increasingly being used to study functional connectivity dynamics, in particular with the aim of extracting individual...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 604 - 607 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1945-8452 |
DOI | 10.1109/ISBI.2018.8363648 |
Cover
Loading…
Abstract | Resting-state functional MRI, which provides a means to estimate the entire brain functional connectivity, has recently received a considerable amount of interest. This modality is increasingly being used to study functional connectivity dynamics, in particular with the aim of extracting individual biomarkers. However, the large amount of noise in the individual fMRI scans poses major challenges. In this work, we propose to analyze fMRI dynamics by extracting Granger causality patterns shared across subjects. This approach allows to capture individual brain organization while extracting population causality patterns which are more robust with respect to noise. We introduce an efficient method for the extraction of shared causality patterns, and we demonstrate its performance by processing the rs-fMRI scans of the hundred unrelated Human Connectome Project subjects. |
---|---|
AbstractList | Resting-state functional MRI, which provides a means to estimate the entire brain functional connectivity, has recently received a considerable amount of interest. This modality is increasingly being used to study functional connectivity dynamics, in particular with the aim of extracting individual biomarkers. However, the large amount of noise in the individual fMRI scans poses major challenges. In this work, we propose to analyze fMRI dynamics by extracting Granger causality patterns shared across subjects. This approach allows to capture individual brain organization while extracting population causality patterns which are more robust with respect to noise. We introduce an efficient method for the extraction of shared causality patterns, and we demonstrate its performance by processing the rs-fMRI scans of the hundred unrelated Human Connectome Project subjects. |
Author | Davatzikos, Christos Honnorat, Nicolas Sahoo, Dushyant |
Author_xml | – sequence: 1 givenname: Dushyant surname: Sahoo fullname: Sahoo, Dushyant organization: University of Pennsylvania – sequence: 2 givenname: Nicolas surname: Honnorat fullname: Honnorat, Nicolas organization: University of Pennsylvania – sequence: 3 givenname: Christos surname: Davatzikos fullname: Davatzikos, Christos organization: University of Pennsylvania |
BookMark | eNotj8FKxDAURaMoOI79AHGTH2jNS9ImXYkOYy0MKOish9f0RSpjW5IIzt-rOHdz4CwO3Et2Nk4jMXYNogAQ9W37-tAWUoAtrKpUpe0Jy2pjoVS2-hPmlC2g1mVudSkvWBbjh_id0VoJvWB3zcuWo3O0p4CJek7fKaBLwzTyyfM4Y4jEm4DjOwXu8CvifkgHPmNKFMZ4xc497iNlRy7Z9nH9tnrKN89Nu7rf5AOYMuWqs8YS9b0VJXhpOilN6UBUNXpf10pVFivv0YHrRIckHXSgCaRX2nR9r5bs5r87ENFuDsMnhsPueFn9AEsfTHw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISBI.2018.8363648 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISBN | 9781538636367 1538636360 |
EISSN | 1945-8452 |
EndPage | 607 |
ExternalDocumentID | 8363648 |
Genre | orig-research |
GroupedDBID | 23N 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i175t-3b878eedd8051f27b2275c1069aff993368a6ffac1cb0bae2c1b14e12f347bdd3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:50:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-3b878eedd8051f27b2275c1069aff993368a6ffac1cb0bae2c1b14e12f347bdd3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8363648 |
PublicationCentury | 2000 |
PublicationDate | 2018-April |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-April |
PublicationDecade | 2010 |
PublicationTitle | Proceedings (International Symposium on Biomedical Imaging) |
PublicationTitleAbbrev | ISBI |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000744304 |
Score | 2.0811825 |
Snippet | Resting-state functional MRI, which provides a means to estimate the entire brain functional connectivity, has recently received a considerable amount of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 604 |
SubjectTerms | Brain modeling Computational modeling Extrapolation Functional magnetic resonance imaging GPU Granger Causality Graphics processing units Parallel Computing Proximal Alternating Linearized Minimization Sociology Statistics |
Title | GPU accelerated extraction of sparse Granger causality patterns |
URI | https://ieeexplore.ieee.org/document/8363648 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED6STOnSR1L6RkPHyoklW5anQkvzKKQE2kC2YMkSlIITHHvpr-_JdtMHHYoXYxAWOrjvO93ddwDX6BORh4SayjAVNEiEpVIJRv0wQgLNI8Rkl9GdPYnJInhchssW3Ox6YYwxVfGZ8dxrlctP17p0V2UDyQUXgWxDGwO3uldrd5-CUBhgaN4kLv1hPJg-301d7Zb0mnU_BqhU-DHah9nnn-uykTevLJSn33-JMv53awfQ_-rUI_MdBh1Cy2RHsPdNZPAIuo5P1nLMPbgdzxck0RrBxmlEpAR9c173NpC1Jehe8q0h47zqBiY6KbcVTyebSoYz2_ZhMXp4uZ_QZoYCfUViUFCuZCRxDykaxLcsUoxFocY4ME6sRW7ChUT72ET7Wg1VYpj2lR8Yn1keRCpN-TF0snVmToDg-cZuUAe6JKR5TMSW4SNCYxkzhsen0HPnstrUMhmr5kjO_v58Dl1nm7oI5gI6RV6aS8T3Ql1Vhv0ADKakXw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPVgvalvx7R48mrTZTTbJSVDsQ9tSsIXeSnazCyKkJU0u_npnk1gfeJBcQmDJMgPzfbsz8w3ADcZE5CGetAIv5pYbcW0FglPL8Xwk0MxHTDYZ3fGED-bu08Jb1OB22wujlCqKz5RtXotcfrySubkq6wSMM-4GO7CLuO-GZbfW9kYFwdDFw3mVunS6YWf4cj801VuBXa38MUKlQJDeAYw__10WjrzZeSZs-f5LlvG_mzuE9levHpluUegIaippwv43mcEmNAyjLAWZW3DXn85JJCXCjVGJiAlG57TsbiArTTDApBtF-mnRD0xklG8Kpk7WhRBnsmnDvPc4exhY1RQF6xWpQWYxEfgB7iFGlzia-oJS35N4EgwjrZGdMB6gh3QkHSm6IlJUOsJxlUM1c30Rx-wY6skqUSdA0L6hGdWBQQmJHuWhpvhwT2lKlWLhKbSMXZbrUihjWZnk7O_P17A3mI1Hy9Fw8nwODeOnsiTmAupZmqtLRPtMXBVO_gDdZKev |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28International+Symposium+on+Biomedical+Imaging%29&rft.atitle=GPU+accelerated+extraction+of+sparse+Granger+causality+patterns&rft.au=Sahoo%2C+Dushyant&rft.au=Honnorat%2C+Nicolas&rft.au=Davatzikos%2C+Christos&rft.date=2018-04-01&rft.pub=IEEE&rft.eissn=1945-8452&rft.spage=604&rft.epage=607&rft_id=info:doi/10.1109%2FISBI.2018.8363648&rft.externalDocID=8363648 |