Detecting mental states of alertness with genetic algorithm variable selection
The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots or medic...
Saved in:
Published in | 2013 IEEE Congress on Evolutionary Computation pp. 1247 - 1254 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
ISBN | 1479904538 9781479904532 |
ISSN | 1089-778X |
DOI | 10.1109/CEC.2013.6557708 |
Cover
Loading…
Abstract | The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots or medical staffs are expected to be in a highly alert state, and this method could help to detect possible problems. In this paper, an approach is developed to predict the state of alertness ("normal" or "relaxed") from the study of electroencephalographic signals (EEG) collected with a limited number of electrodes. The EEG of 58 participants in the two alertness states (116 records) were collected via a cap with 58 electrodes. After a data validation step, 19 subjects were retained for further analysis. A genetic algorithm was used to select an optimal subset of electrodes. Common spatial pattern (CSP) coupled to linear discriminant analysis (LDA) was used to build a decision rule and thus predict the alertness of the participants. Different subset sizes were investigated and the best result was obtained by considering 9 electrodes (correct classification rate of 73.68%). |
---|---|
AbstractList | The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots or medical staffs are expected to be in a highly alert state, and this method could help to detect possible problems. In this paper, an approach is developed to predict the state of alertness ("normal" or "relaxed") from the study of electroencephalographic signals (EEG) collected with a limited number of electrodes. The EEG of 58 participants in the two alertness states (116 records) were collected via a cap with 58 electrodes. After a data validation step, 19 subjects were retained for further analysis. A genetic algorithm was used to select an optimal subset of electrodes. Common spatial pattern (CSP) coupled to linear discriminant analysis (LDA) was used to build a decision rule and thus predict the alertness of the participants. Different subset sizes were investigated and the best result was obtained by considering 9 electrodes (correct classification rate of 73.68%). |
Author | Vezard, Laurent Legrand, Pierrick Trujillo, Leonardo Faita-Ainseba, Frederique Chavent, Marie |
Author_xml | – sequence: 1 givenname: Laurent surname: Vezard fullname: Vezard, Laurent email: laurent.vezard@inria.fr organization: IMB, INRIA Bordeaux Sud-Ouest, Bordeaux, France – sequence: 2 givenname: Marie surname: Chavent fullname: Chavent, Marie email: marie.chavent@inria.fr organization: IMB, INRIA Bordeaux Sud-Ouest, Bordeaux, France – sequence: 3 givenname: Pierrick surname: Legrand fullname: Legrand, Pierrick email: pierrick.legrand@u-bordeaux2.fr organization: IMB, INRIA Bordeaux Sud-Ouest, Bordeaux, France – sequence: 4 givenname: Frederique surname: Faita-Ainseba fullname: Faita-Ainseba, Frederique email: frederique.faita@u-bordeaux2.fr organization: Univ. Bordeaux Segalen, Bordeaux, France – sequence: 5 givenname: Leonardo surname: Trujillo fullname: Trujillo, Leonardo email: leonardo.trujillo@tectijuana.edu.mx organization: Doctorado en Cienc. de la Ing., Inst. Tecnoloico de Tijuana, Tijuana, Mexico |
BookMark | eNpFkL1OwzAURo0oEm3pjsTiF0i4jpPaHlEoP1IFS4du1W18HYwSB8UWiLcniEpMn84ZzvAt2CwMgRi7FpALAea23tR5AULm66pSCvQZW4hSGQNlVezP_0HqGZsL0CZTSu8v2SrGdwCYGgpAztnLPSVqkg8t7ykk7HhMmCjywXHsaEyBYuRfPr3xlgIl30y6HcZJ9PwTR4_Hjnik7jcyhCt24bCLtDrtku0eNrv6Kdu-Pj7Xd9vMC1WlTJrKFc5S1SCpkqyDRisDVgunsSA0TgOWDcDRgmyssKQIFRkENLgu5JLd_GU9ER0-Rt_j-H04XSF_AIh7VD8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CEC.2013.6557708 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 147990452X 9781479904525 9781479904549 1479904546 9781479904518 1479904511 |
EndPage | 1254 |
ExternalDocumentID | 6557708 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IE 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO CS3 EBS EJD HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 |
ID | FETCH-LOGICAL-i175t-395f2fde5cae74edf0c8790d81f8a2ea9f80a4c00bd03cd1de7ea7e9a0a9a623 |
IEDL.DBID | RIE |
ISBN | 1479904538 9781479904532 |
ISSN | 1089-778X |
IngestDate | Wed Aug 27 04:19:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-395f2fde5cae74edf0c8790d81f8a2ea9f80a4c00bd03cd1de7ea7e9a0a9a623 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6557708 |
PublicationCentury | 2000 |
PublicationDate | 2013-June |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-June |
PublicationDecade | 2010 |
PublicationTitle | 2013 IEEE Congress on Evolutionary Computation |
PublicationTitleAbbrev | CEC |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001107003 ssj0014519 |
Score | 1.8674737 |
Snippet | The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1247 |
SubjectTerms | Bioinformatics Data acquisition Electrodes Electroencephalography Genetic algorithms Genomics Hidden Markov models |
Title | Detecting mental states of alertness with genetic algorithm variable selection |
URI | https://ieeexplore.ieee.org/document/6557708 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qk15QwPhODx5d6D5Kt2eEEBOIB0y4kT6mxhhZA4sHf73TfYAaD966c9ndSdt5fvMRcstljGaHuSCNJAYoxoWBUloEzqBxjowAbn2gOJ0NJk_Jw4IvGuRuh4UBgKL5DHp-WdTybWa2PlXWH3AuhEf2HmDgVmK19vkUjGMY293CnoBWls31Ej3IdFGAugTevQke8XrWU_Uc1fVLJvvD0dA3fMW96mU_WFcKozNukWn9uWWvyWtvm-ue-fw1yfG__3NMunt4H33cGa4T0oBVm7RqfgdaHfc2Ofo2rLBDZvfgCw64piUhAC3ASBuaOYpWZp37S5P6vC7FTemxkSh-ztYoeKMfGJJ7kBbdFLw7uBm6ZD4ezYeToGJjCF7QxciDWHIXOQvcKBAJWMdMKiSzaehSFYGSLmUqMYxpy2JjQwsClACpmJIKnaxT0lxlKzgjlFvNAfWvUgdJqJh0SseagdQ6cgNQ56TjdbV8L-dtLCs1XfwtviSHUUlREbDwijTz9Rau0VHI9U2xQ74A4DC47A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGIAFaIt444GRtM7DdTyXogJtxVCkbpUfZ4QQDSopA7-ec5K2gBjYnFuSnGzf87uPkEsuYzQ7zAVpJDFAMS4MlNIicAaNc2QEcOsDxeGo039M7iZ8UiNXKywMABTNZ9Dyy6KWbzOz8KmydodzITyydxPtPg9LtNY6o4KRDGOre9hT0MqyvV6iD5lOCliXwNs3wUO-nPZUPUfLCiaT7W6v61u-4lb1uh-8K4XZudklw-UHl90mL61Frlvm89csx__-0R5prgF-9GFluvZJDWZ1srtkeKDVga-TnW_jChtkdA2-5IBrWlIC0AKO9E4zR9HOzHN_bVKf2aW4LT06EsVP2RwFr_QDg3IP06LvBfMObocmGd_0xt1-UPExBM_oZORBLLmLnAVuFIgErGMmFZLZNHSpikBJlzKVGMa0ZbGxoQUBSoBUTEmFbtYB2ZhlMzgklFvNAfWvUgdJqJh0SseagdQ6ch1QR6ThdTV9KyduTCs1Hf8tviBb_fFwMB3cju5PyHZUElYELDwlG_l8AWfoNuT6vNgtX7d8vDU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=Detecting+mental+states+of+alertness+with+genetic+algorithm+variable+selection&rft.au=Vezard%2C+Laurent&rft.au=Chavent%2C+Marie&rft.au=Legrand%2C+Pierrick&rft.au=Faita-Ainseba%2C+Frederique&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479904532&rft.issn=1089-778X&rft.spage=1247&rft.epage=1254&rft_id=info:doi/10.1109%2FCEC.2013.6557708&rft.externalDocID=6557708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |