Detecting mental states of alertness with genetic algorithm variable selection

The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots or medic...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE Congress on Evolutionary Computation pp. 1247 - 1254
Main Authors Vezard, Laurent, Chavent, Marie, Legrand, Pierrick, Faita-Ainseba, Frederique, Trujillo, Leonardo
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text
ISBN1479904538
9781479904532
ISSN1089-778X
DOI10.1109/CEC.2013.6557708

Cover

Loading…
Abstract The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots or medical staffs are expected to be in a highly alert state, and this method could help to detect possible problems. In this paper, an approach is developed to predict the state of alertness ("normal" or "relaxed") from the study of electroencephalographic signals (EEG) collected with a limited number of electrodes. The EEG of 58 participants in the two alertness states (116 records) were collected via a cap with 58 electrodes. After a data validation step, 19 subjects were retained for further analysis. A genetic algorithm was used to select an optimal subset of electrodes. Common spatial pattern (CSP) coupled to linear discriminant analysis (LDA) was used to build a decision rule and thus predict the alertness of the participants. Different subset sizes were investigated and the best result was obtained by considering 9 electrodes (correct classification rate of 73.68%).
AbstractList The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such a task is relevant to diverse domains, where a person is expected or required to be in a particular state. For instance, pilots or medical staffs are expected to be in a highly alert state, and this method could help to detect possible problems. In this paper, an approach is developed to predict the state of alertness ("normal" or "relaxed") from the study of electroencephalographic signals (EEG) collected with a limited number of electrodes. The EEG of 58 participants in the two alertness states (116 records) were collected via a cap with 58 electrodes. After a data validation step, 19 subjects were retained for further analysis. A genetic algorithm was used to select an optimal subset of electrodes. Common spatial pattern (CSP) coupled to linear discriminant analysis (LDA) was used to build a decision rule and thus predict the alertness of the participants. Different subset sizes were investigated and the best result was obtained by considering 9 electrodes (correct classification rate of 73.68%).
Author Vezard, Laurent
Legrand, Pierrick
Trujillo, Leonardo
Faita-Ainseba, Frederique
Chavent, Marie
Author_xml – sequence: 1
  givenname: Laurent
  surname: Vezard
  fullname: Vezard, Laurent
  email: laurent.vezard@inria.fr
  organization: IMB, INRIA Bordeaux Sud-Ouest, Bordeaux, France
– sequence: 2
  givenname: Marie
  surname: Chavent
  fullname: Chavent, Marie
  email: marie.chavent@inria.fr
  organization: IMB, INRIA Bordeaux Sud-Ouest, Bordeaux, France
– sequence: 3
  givenname: Pierrick
  surname: Legrand
  fullname: Legrand, Pierrick
  email: pierrick.legrand@u-bordeaux2.fr
  organization: IMB, INRIA Bordeaux Sud-Ouest, Bordeaux, France
– sequence: 4
  givenname: Frederique
  surname: Faita-Ainseba
  fullname: Faita-Ainseba, Frederique
  email: frederique.faita@u-bordeaux2.fr
  organization: Univ. Bordeaux Segalen, Bordeaux, France
– sequence: 5
  givenname: Leonardo
  surname: Trujillo
  fullname: Trujillo, Leonardo
  email: leonardo.trujillo@tectijuana.edu.mx
  organization: Doctorado en Cienc. de la Ing., Inst. Tecnoloico de Tijuana, Tijuana, Mexico
BookMark eNpFkL1OwzAURo0oEm3pjsTiF0i4jpPaHlEoP1IFS4du1W18HYwSB8UWiLcniEpMn84ZzvAt2CwMgRi7FpALAea23tR5AULm66pSCvQZW4hSGQNlVezP_0HqGZsL0CZTSu8v2SrGdwCYGgpAztnLPSVqkg8t7ykk7HhMmCjywXHsaEyBYuRfPr3xlgIl30y6HcZJ9PwTR4_Hjnik7jcyhCt24bCLtDrtku0eNrv6Kdu-Pj7Xd9vMC1WlTJrKFc5S1SCpkqyDRisDVgunsSA0TgOWDcDRgmyssKQIFRkENLgu5JLd_GU9ER0-Rt_j-H04XSF_AIh7VD8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2013.6557708
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 147990452X
9781479904525
9781479904549
1479904546
9781479904518
1479904511
EndPage 1254
ExternalDocumentID 6557708
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i175t-395f2fde5cae74edf0c8790d81f8a2ea9f80a4c00bd03cd1de7ea7e9a0a9a623
IEDL.DBID RIE
ISBN 1479904538
9781479904532
ISSN 1089-778X
IngestDate Wed Aug 27 04:19:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-395f2fde5cae74edf0c8790d81f8a2ea9f80a4c00bd03cd1de7ea7e9a0a9a623
PageCount 8
ParticipantIDs ieee_primary_6557708
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 IEEE Congress on Evolutionary Computation
PublicationTitleAbbrev CEC
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001107003
ssj0014519
Score 1.8674737
Snippet The objective of the present work is to develop a method able to automatically determine mental states of vigilance; i.e., a person's state of alertness. Such...
SourceID ieee
SourceType Publisher
StartPage 1247
SubjectTerms Bioinformatics
Data acquisition
Electrodes
Electroencephalography
Genetic algorithms
Genomics
Hidden Markov models
Title Detecting mental states of alertness with genetic algorithm variable selection
URI https://ieeexplore.ieee.org/document/6557708
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qk15QwPhODx5d6D5Kt2eEEBOIB0y4kT6mxhhZA4sHf73TfYAaD966c9ndSdt5fvMRcstljGaHuSCNJAYoxoWBUloEzqBxjowAbn2gOJ0NJk_Jw4IvGuRuh4UBgKL5DHp-WdTybWa2PlXWH3AuhEf2HmDgVmK19vkUjGMY293CnoBWls31Ej3IdFGAugTevQke8XrWU_Uc1fVLJvvD0dA3fMW96mU_WFcKozNukWn9uWWvyWtvm-ue-fw1yfG__3NMunt4H33cGa4T0oBVm7RqfgdaHfc2Ofo2rLBDZvfgCw64piUhAC3ASBuaOYpWZp37S5P6vC7FTemxkSh-ztYoeKMfGJJ7kBbdFLw7uBm6ZD4ezYeToGJjCF7QxciDWHIXOQvcKBAJWMdMKiSzaehSFYGSLmUqMYxpy2JjQwsClACpmJIKnaxT0lxlKzgjlFvNAfWvUgdJqJh0SseagdQ6cgNQ56TjdbV8L-dtLCs1XfwtviSHUUlREbDwijTz9Rau0VHI9U2xQ74A4DC47A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYqGIAFaIt444GRtM7DdTyXogJtxVCkbpUfZ4QQDSopA7-ec5K2gBjYnFuSnGzf87uPkEsuYzQ7zAVpJDFAMS4MlNIicAaNc2QEcOsDxeGo039M7iZ8UiNXKywMABTNZ9Dyy6KWbzOz8KmydodzITyydxPtPg9LtNY6o4KRDGOre9hT0MqyvV6iD5lOCliXwNs3wUO-nPZUPUfLCiaT7W6v61u-4lb1uh-8K4XZudklw-UHl90mL61Frlvm89csx__-0R5prgF-9GFluvZJDWZ1srtkeKDVga-TnW_jChtkdA2-5IBrWlIC0AKO9E4zR9HOzHN_bVKf2aW4LT06EsVP2RwFr_QDg3IP06LvBfMObocmGd_0xt1-UPExBM_oZORBLLmLnAVuFIgErGMmFZLZNHSpikBJlzKVGMa0ZbGxoQUBSoBUTEmFbtYB2ZhlMzgklFvNAfWvUgdJqJh0SseagdQ6ch1QR6ThdTV9KyduTCs1Hf8tviBb_fFwMB3cju5PyHZUElYELDwlG_l8AWfoNuT6vNgtX7d8vDU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+Congress+on+Evolutionary+Computation&rft.atitle=Detecting+mental+states+of+alertness+with+genetic+algorithm+variable+selection&rft.au=Vezard%2C+Laurent&rft.au=Chavent%2C+Marie&rft.au=Legrand%2C+Pierrick&rft.au=Faita-Ainseba%2C+Frederique&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781479904532&rft.issn=1089-778X&rft.spage=1247&rft.epage=1254&rft_id=info:doi/10.1109%2FCEC.2013.6557708&rft.externalDocID=6557708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon