Camera Style Adaptation for Person Re-identification

Being a cross-camera retrieval task, person re-identification suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing camera styl...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 5157 - 5166
Main Authors Zhong, Zhun, Zheng, Liang, Zheng, Zhedong, Li, Shaozi, Yang, Yi
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Being a cross-camera retrieval task, person re-identification suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing camera style (CamStyle) adaptation. CamStyle can serve as a data augmentation approach that smooths the camera style disparities. Specifically, with CycleGAN, labeled training images can be style-transferred to each camera, and, along with the original training samples, form the augmented training set. This method, while increasing data diversity against over-fitting, also incurs a considerable level of noise. In the effort to alleviate the impact of noise, the label smooth regularization (LSR) is adopted. The vanilla version of our method (without LSR) performs reasonably well on few-camera systems in which over-fitting often occurs. With LSR, we demonstrate consistent improvement in all systems regardless of the extent of over-fitting. We also report competitive accuracy compared with the state of the art. Code is available at: https://github.com/zhunzhong07/CamStyle
AbstractList Being a cross-camera retrieval task, person re-identification suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing camera style (CamStyle) adaptation. CamStyle can serve as a data augmentation approach that smooths the camera style disparities. Specifically, with CycleGAN, labeled training images can be style-transferred to each camera, and, along with the original training samples, form the augmented training set. This method, while increasing data diversity against over-fitting, also incurs a considerable level of noise. In the effort to alleviate the impact of noise, the label smooth regularization (LSR) is adopted. The vanilla version of our method (without LSR) performs reasonably well on few-camera systems in which over-fitting often occurs. With LSR, we demonstrate consistent improvement in all systems regardless of the extent of over-fitting. We also report competitive accuracy compared with the state of the art. Code is available at: https://github.com/zhunzhong07/CamStyle
Author Li, Shaozi
Zhong, Zhun
Zheng, Zhedong
Zheng, Liang
Yang, Yi
Author_xml – sequence: 1
  givenname: Zhun
  surname: Zhong
  fullname: Zhong, Zhun
– sequence: 2
  givenname: Liang
  surname: Zheng
  fullname: Zheng, Liang
– sequence: 3
  givenname: Zhedong
  surname: Zheng
  fullname: Zheng, Zhedong
– sequence: 4
  givenname: Shaozi
  surname: Li
  fullname: Li, Shaozi
– sequence: 5
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
BookMark eNotjM1Kw0AURkdRsNasXbjJCyTOnb_cuyxBq1Cw1OK2TGZuYKRNSpJN396grs4H5-Pci5uu71iIR5AlgKTn-mu7K5UELKW0Bq5ERhWC1eicUZKuxQKk04UjoDuRjeO3lFI51GjsQpjan3jw-ed0OXK-iv48-Sn1Xd72Q77lYZznjosUuZtSm8KvfBC3rT-OnP1zKfavL_v6rdh8rN_r1aZIUNmp0JXz1BhQCBFIaYwRkbwKkaomIHjrKOj5gMF5NKqRTEEZw8hs0OmlePrLJmY-nId08sPlgLaaHekfXkFGOg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00541
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 5166
ExternalDocumentID 8578639
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-376a9b41281d19238dd889a2cd97bc81a569c3b418c6a842b0e9c244e8ee4863
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-376a9b41281d19238dd889a2cd97bc81a569c3b418c6a842b0e9c244e8ee4863
PageCount 10
ParticipantIDs ieee_primary_8578639
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.5992458
Snippet Being a cross-camera retrieval task, person re-identification suffers from image style variations caused by different cameras. The art implicitly addresses...
SourceID ieee
SourceType Publisher
StartPage 5157
SubjectTerms Cameras
Gallium nitride
Image color analysis
Image generation
Task analysis
Training
Title Camera Style Adaptation for Person Re-identification
URI https://ieeexplore.ieee.org/document/8578639
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4AJ0-oYHxnDx4tlGVbZ4-GSIiJhiAabmQfQ0I0QLQ96K93p61ojAdvfexhutPdb3bmmxmAi8Qges3F8FLNRbUTiqyUvBnqBS4w9nJRsHzv09Gjup0lsxpcbnNhiKggn1GHL4tYvl-7nF1lXQy_V0DUOtTDwa3M1dr6U2SKfawiZHzfDyebVGNVzacX6-7gaTxhLheTJxPuAP-jnUqBJsMm3H3JUZJInjt5Zjvu41eJxv8Kugvt77w9Md4i0h7UaLUPzcrQFNUyfmuBGhj2RYmH7P2FxLU3mzIgL4IFK8aFDS4mFC19RSUqXrZhOryZDkZR1T4hWgabIOOtw2irOFTm2Y5D7xG1kc7rK-uwZ5JUu34YgC41qKSNSbuA9oREKoh_AI3VekWHIAKCxUYH4JeIqmdji1oFNWoySSx1Io-gxXMw35QFMubV5x___fgEdlgLJd_qFBrZa05nAdkze16o9BNpVZ9S
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4gHvSECsa3e_BooV26dfZoiAQVCEE03Mg-hoRogGg56K93t61ojAdvfR2mnXa_6cw33wBcCIVopRfDS6QX1RYUaM79YiinOMXQ8mnG8u0nncf4bizGJbhc98IQUUY-o7rfzGr5dmFWPlXWQPd6OUTdgE2H-yLKu7XWGRWeYBOLGpnfb7p_m0RioecThbLRehoMPZvL0yeFnwH_Y6BKhiftCvS-LMlpJM_1Varr5uOXSON_Td2B2nfnHhusMWkXSjTfg0oRarLiQ36rQtxSPhvFHtL3F2LXVi3zkjxzMSwbZFE4G1IwswWZKDtZg1H7ZtTqBMUAhWDmooLULx5K6tgXy6yP5NBaRKm4sfJKG4yUSKRpugvQJApjrkOSxuE9IVHszN-H8nwxpwNgDsNCJR30c8Q40qFGGTtHSlIi5FLwQ6j6ZzBZ5hIZk-L2j_4-fA5bnVGvO-ne9u-PYdt7JGdfnUA5fV3RqcP5VJ9l7v0E7vCimw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Camera+Style+Adaptation+for+Person+Re-identification&rft.au=Zhong%2C+Zhun&rft.au=Zheng%2C+Liang&rft.au=Zheng%2C+Zhedong&rft.au=Li%2C+Shaozi&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=5157&rft.epage=5166&rft_id=info:doi/10.1109%2FCVPR.2018.00541&rft.externalDocID=8578639