Opinion Mining on Social Media Data

Microblogging (Twitter or Facebook) has become a very popular communication tool among Internet users in recent years. Information is generated and managed through either computer or mobile devices by one person and is consumed by many other persons, with most of this user-generated content being te...

Full description

Saved in:
Bibliographic Details
Published in2013 IEEE 14th International Conference on Mobile Data Management Vol. 2; pp. 91 - 96
Main Authors Po-Wei Liang, Bi-Ru Dai
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microblogging (Twitter or Facebook) has become a very popular communication tool among Internet users in recent years. Information is generated and managed through either computer or mobile devices by one person and is consumed by many other persons, with most of this user-generated content being textual information. As there are a lot of raw data of people posting real time messages about their opinions on a variety of topics in daily life, it is a worthwhile research endeavor to collect and analyze these data, which may be useful for users or managers to make informed decisions, for example. However this problem is challenging because a micro-blog post is usually very short and colloquial, and traditional opinion mining algorithms do not work well in such type of text. Therefore, in this paper, we propose a new system architecture that can automatically analyze the sentiments of these messages. We combine this system with manually annotated data from Twitter, one of the most popular microblogging platforms, for the task of sentiment analysis. In this system, machines can learn how to automatically extract the set of messages which contain opinions, filter out nonopinion messages and determine their sentiment directions (i.e. positive, negative). Experimental results verify the effectiveness of our system on sentiment analysis in real microblogging applications.
AbstractList Microblogging (Twitter or Facebook) has become a very popular communication tool among Internet users in recent years. Information is generated and managed through either computer or mobile devices by one person and is consumed by many other persons, with most of this user-generated content being textual information. As there are a lot of raw data of people posting real time messages about their opinions on a variety of topics in daily life, it is a worthwhile research endeavor to collect and analyze these data, which may be useful for users or managers to make informed decisions, for example. However this problem is challenging because a micro-blog post is usually very short and colloquial, and traditional opinion mining algorithms do not work well in such type of text. Therefore, in this paper, we propose a new system architecture that can automatically analyze the sentiments of these messages. We combine this system with manually annotated data from Twitter, one of the most popular microblogging platforms, for the task of sentiment analysis. In this system, machines can learn how to automatically extract the set of messages which contain opinions, filter out nonopinion messages and determine their sentiment directions (i.e. positive, negative). Experimental results verify the effectiveness of our system on sentiment analysis in real microblogging applications.
Author Po-Wei Liang
Bi-Ru Dai
Author_xml – sequence: 1
  surname: Po-Wei Liang
  fullname: Po-Wei Liang
  email: M10015085@mail.ntust.edu.tw
  organization: Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
– sequence: 2
  surname: Bi-Ru Dai
  fullname: Bi-Ru Dai
  email: brdai@csie.ntust.edu.tw
  organization: Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
BookMark eNotzD1PwzAQgOFDFIm2ZGJkicSc9OzLne0RtXxJjToUJLbKcRxkVJKq6cK_pxJMzzu9M5j0Qx8BbhWWSqFb1Ku61KioNHQBMzTiuHKGPi4hc8aqSgwJiuUJTBWzKkRXfA3ZOH4hokJiRTKF-80h9Wno8_pM_5mfazuE5Pd5Hdvk85U_-Ru46vx-jNm_c3h_enxbvhTrzfPr8mFdJGX4VJC2IUQnMTTUkW41ahN0G2xwWiMF66xUni13jTeinbPsqYkNt11niRuaw93fN8UYd4dj-vbHn52wOBRHv1sQQVk
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MDM.2013.73
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 076954973X
9780769549736
EndPage 96
ExternalDocumentID 6569069
Genre orig-research
GroupedDBID 29O
6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i175t-328cce96ecb3f32d2027c2dc8c92203c89864a585fba7629985a3beb5dff835b3
IEDL.DBID RIE
ISBN 9781467360685
1467360686
ISSN 1551-6245
IngestDate Wed Aug 27 04:14:36 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-328cce96ecb3f32d2027c2dc8c92203c89864a585fba7629985a3beb5dff835b3
PageCount 6
ParticipantIDs ieee_primary_6569069
PublicationCentury 2000
PublicationDate 2013-June
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-June
PublicationDecade 2010
PublicationTitle 2013 IEEE 14th International Conference on Mobile Data Management
PublicationTitleAbbrev mdm
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001035136
ssj0036807
Score 2.1602128
Snippet Microblogging (Twitter or Facebook) has become a very popular communication tool among Internet users in recent years. Information is generated and managed...
SourceID ieee
SourceType Publisher
StartPage 91
SubjectTerms Accuracy
Dictionaries
Microblogging
Motion pictures
Opinion Mining
Sentiment analysis
Text categorization
Training
Training data
Twitter
Title Opinion Mining on Social Media Data
URI https://ieeexplore.ieee.org/document/6569069
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjxVbcU3AT26abovsmdrKULUg4Xeyu5kA0VIi6QXf707SdqKePC22VOGZXe-eXzzAdyjkk4L1AG5pcikkIqlIQ5iAXsoNM4UWhEbOXvRs7l8XqhFBx72XBjvfd185mNa1rX8fI1bSpWNAvYwiTZd6IbAreFqHfIpVBIj7e7mFRa6oUoTImCaS1WTuqiJiTgRu1lP7bdqiXvjxIyySUYNXyImJfUfgiu1v5n2Idv9adNm8hFvKxfj168hjv815RiGB2Zf9Lb3WSfQ8eUp9HfSDlF70wdw97pZleHIoqwWkIjCqiHyRlTZsdHEVnYI8-nT--OMtXoKbBVAQsUETxG90R6dKATPKe-BPMcUDeeJwJRGtdsQPxTOhjcyBGLKCuedyosiADUnzqBXrkt_DhGFkTKAF-Gtk14Km0vDE0-TftBxHF_AgGxebpqRGcvW3Mu_t6_giDcqEywZX0Ov-tz6m-DrK3dbH_I3omWfEA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMsBUoEW8iQQjTlO_FM-UqkBTGFqpW2U7jlQhpRVKF349viRtEWJgczzlZNn33eO7D-DeCm4ks9Ijt9gSzrggsY-DiMcewiqjMimQjZyM5XDKX2Zi1oCHLRfGOVc2n7kQl2UtP13aNabKuh57qEiqPdj3fl_0KrbWLqOCRTFU767eYSYrsjRiAiIpFyWtC9uYkBWxmfZUf4uauteLVDfpJ9jyxULUUv8huVJ6nEELks2_Vo0mH-G6MKH9-jXG8b_GHEFnx-0L3rde6xgaLj-B1kbcIajvehvu3laL3B9akJQSEoFfVVTeAGs7OujrQndgOniaPA5JrahAFh4mFITR2FqnpLOGZYymmPmwNLWxVZRGzMY4rF37CCIz2r-SPhQTmhlnRJplHqoZdgrNfJm7MwgwkOQevjCnDXec6ZQrGjmc9WMNtb1zaKPN81U1NGNem3vx9_YtHAwnyWg-eh6_XsIhrTQnSNS7gmbxuXbX3vMX5qY88G8rzaJZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2013+IEEE+14th+International+Conference+on+Mobile+Data+Management&rft.atitle=Opinion+Mining+on+Social+Media+Data&rft.au=Po-Wei+Liang&rft.au=Bi-Ru+Dai&rft.date=2013-06-01&rft.pub=IEEE&rft.isbn=9781467360685&rft.issn=1551-6245&rft.volume=2&rft.spage=91&rft.epage=96&rft_id=info:doi/10.1109%2FMDM.2013.73&rft.externalDocID=6569069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-6245&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-6245&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-6245&client=summon