The application of space-time ARIMA model on traffic flow forecasting

Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time series modeling is a promising inductive method that uses a small number of parameters and can be used for online monitoring and prediction....

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3408 - 3412
Main Authors Shu-Lan Lin, Hong-Qiong Huang, Da-Qi Zhu, Tian-Zhen Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time series modeling is a promising inductive method that uses a small number of parameters and can be used for online monitoring and prediction. In this paper, we develop space-time autoregressive models for urban traffic flow network scenarios. We evaluate the ability of the space-time autoregressive models to model the spatial and temporal correlations in the traffic network and show that the space-time model performs well.
AbstractList Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time series modeling is a promising inductive method that uses a small number of parameters and can be used for online monitoring and prediction. In this paper, we develop space-time autoregressive models for urban traffic flow network scenarios. We evaluate the ability of the space-time autoregressive models to model the spatial and temporal correlations in the traffic network and show that the space-time model performs well.
Author Shu-Lan Lin
Tian-Zhen Wang
Hong-Qiong Huang
Da-Qi Zhu
Author_xml – sequence: 1
  surname: Shu-Lan Lin
  fullname: Shu-Lan Lin
  organization: Coll. of Inf. Eng., Shanghai Maritime Univ., Shanghai, China
– sequence: 2
  surname: Hong-Qiong Huang
  fullname: Hong-Qiong Huang
– sequence: 3
  surname: Da-Qi Zhu
  fullname: Da-Qi Zhu
  organization: Coll. of Inf. Eng., Shanghai Maritime Univ., Shanghai, China
– sequence: 4
  surname: Tian-Zhen Wang
  fullname: Tian-Zhen Wang
BookMark eNo1kE9Lw0AUxFdswbb2C-hlv0DqvrfZbPZYQq2FFkF68Fb2z1tdSZOQBMRvb8E6l2H4MXOYOZs0bUOMPYBYAQjztKsO-2qFQpiVQkBdqhs2hxzzXGoh8ZYtjS7_M8oJmyEUIgMp36dsfumVBsAovGPLYfgSF-UKdSFnbHP8JG67rk7ejqlteBv50FlP2ZjOxNdvu8Oan9tANb_AsbcxJs9j3X7z2Pbk7TCm5uOeTaOtB1pefcGOz5tj9ZLtX7e7ar3PEmg1Zhhd9AjgQwCtfaTonFMCNRlQKteFijKISEpZcKYoggslBlF6Z1EFkgv2-DebiOjU9els-5_T9RH5C-C6Ujo
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212785
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 3412
ExternalDocumentID 5212785
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2fbfc211cdd177cfefbbb5027e91554765f3d0fe55a1b966dbd82d08cba25de3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:21:16 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2fbfc211cdd177cfefbbb5027e91554765f3d0fe55a1b966dbd82d08cba25de3
PageCount 5
ParticipantIDs ieee_primary_5212785
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.494092
Snippet Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time...
SourceID ieee
SourceType Publisher
StartPage 3408
SubjectTerms Constraint theory
Cybernetics
Data engineering
Educational institutions
Forecasting
Intelligent Transport Systems
Machine learning
Predictive models
Random variables
STARIMA
Telecommunication traffic
Traffic control
Traffic flow network
Vectors
Title The application of space-time ARIMA model on traffic flow forecasting
URI https://ieeexplore.ieee.org/document/5212785
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjxVbcU3e_DotnltNjmW0tKKEZEKvZV9zIIojdQUwV_vbB71gQdv2YSQ7Gays9_OfN8QchWDtkr6nEXKkwxdgGAykYpJqxSaSOJB5AjO2V08e4xulnzZItc7LgwAlMlnMHCHZSzf5HrrtsqGjmcqEt4mbQRuFVdrt5_ipMFFLSVVtgUCj7JgXuDHHkMotmx4XaFAx9TIPdXtsCHUeOlwPs5ux5WUZf3EH6VXSs8z7ZKseecq4eR5sC3UQH_8knP8b6f2Sf-L40fvd97rgLRgfUi6TZEHWv_zPTJBQ6Lfwtw0txRnIQ3MlaWno4d5NqJlPR2KF4uNdJoU1L7k7xTXw6Dlm0us7pPFdLIYz1hde4E94YKiYIFVViM41Mb4QmgL-O0URwwLTlA-EjG3ofEscC59hZDJKJMExku0kgE3EB6RzjpfwzGhOGdYLw0j7UUqUilXiPHwthgQe8c2lSek5wZl9Vqpa6zq8Tj9-_QZ2aviOS5h9px0is0WLnBZUKjL0h4-AVMzr84
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcCpQIvY8YEjbp3FcXKsqqIWmgqhIvVWeZUQqEElFRJfzzhLWcSBW5woSuxMPH6eeW8QuoqMslJ4jISSCgIugBMRC0mElRJMJKYmdATndBqNHsPbOZs30PWGC2OMKZLPTNcdFrF8nam12yrrOZ4pj9kW2ga_z_ySrbXZUXHi4LwSkyraHKBHUTLP9yJKAIzNa2ZXwME11YJPVTuoKTU06Y0H6WRQillWz_xRfKXwPTctlNZvXaacPHfXueyqj1-Cjv_t1h7qfLH88P3Gf-2jhlkeoFZd5gFXf30bDcGU8LdAN84shnlIGeIK0-P-wzjt46KiDoaL-Uo4VQpsX7J3DCtio8SbS63uoNnNcDYYkar6AnmCJUVOfCutAniotPY4V9bA15MMUKxxkvIhj5gNNLWGMeFJAE1a6tjXNFZS-Eyb4BA1l9nSHCEMs4alSRAqGspQJkwCyoPbIgPoO7KJOEZtNyiL11JfY1GNx8nfpy_RzmiWThaT8fTuFO2W0R2XPnuGmvlqbc5hkZDLi8I2PgG57bMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=The+application+of+space-time+ARIMA+model+on+traffic+flow+forecasting&rft.au=Shu-Lan+Lin&rft.au=Hong-Qiong+Huang&rft.au=Da-Qi+Zhu&rft.au=Tian-Zhen+Wang&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=6&rft.spage=3408&rft.epage=3412&rft_id=info:doi/10.1109%2FICMLC.2009.5212785&rft.externalDocID=5212785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon