The application of space-time ARIMA model on traffic flow forecasting
Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time series modeling is a promising inductive method that uses a small number of parameters and can be used for online monitoring and prediction....
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3408 - 3412 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time series modeling is a promising inductive method that uses a small number of parameters and can be used for online monitoring and prediction. In this paper, we develop space-time autoregressive models for urban traffic flow network scenarios. We evaluate the ability of the space-time autoregressive models to model the spatial and temporal correlations in the traffic network and show that the space-time model performs well. |
---|---|
AbstractList | Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time series modeling is a promising inductive method that uses a small number of parameters and can be used for online monitoring and prediction. In this paper, we develop space-time autoregressive models for urban traffic flow network scenarios. We evaluate the ability of the space-time autoregressive models to model the spatial and temporal correlations in the traffic network and show that the space-time model performs well. |
Author | Shu-Lan Lin Tian-Zhen Wang Hong-Qiong Huang Da-Qi Zhu |
Author_xml | – sequence: 1 surname: Shu-Lan Lin fullname: Shu-Lan Lin organization: Coll. of Inf. Eng., Shanghai Maritime Univ., Shanghai, China – sequence: 2 surname: Hong-Qiong Huang fullname: Hong-Qiong Huang – sequence: 3 surname: Da-Qi Zhu fullname: Da-Qi Zhu organization: Coll. of Inf. Eng., Shanghai Maritime Univ., Shanghai, China – sequence: 4 surname: Tian-Zhen Wang fullname: Tian-Zhen Wang |
BookMark | eNo1kE9Lw0AUxFdswbb2C-hlv0DqvrfZbPZYQq2FFkF68Fb2z1tdSZOQBMRvb8E6l2H4MXOYOZs0bUOMPYBYAQjztKsO-2qFQpiVQkBdqhs2hxzzXGoh8ZYtjS7_M8oJmyEUIgMp36dsfumVBsAovGPLYfgSF-UKdSFnbHP8JG67rk7ejqlteBv50FlP2ZjOxNdvu8Oan9tANb_AsbcxJs9j3X7z2Pbk7TCm5uOeTaOtB1pefcGOz5tj9ZLtX7e7ar3PEmg1Zhhd9AjgQwCtfaTonFMCNRlQKteFijKISEpZcKYoggslBlF6Z1EFkgv2-DebiOjU9els-5_T9RH5C-C6Ujo |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212785 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 3412 |
ExternalDocumentID | 5212785 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-2fbfc211cdd177cfefbbb5027e91554765f3d0fe55a1b966dbd82d08cba25de3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:21:16 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-2fbfc211cdd177cfefbbb5027e91554765f3d0fe55a1b966dbd82d08cba25de3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5212785 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.494092 |
Snippet | Traffic flow data are in the form of spatial time series and are collected at specific locations at constant intervals of time. Space-time autoregressive time... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3408 |
SubjectTerms | Constraint theory Cybernetics Data engineering Educational institutions Forecasting Intelligent Transport Systems Machine learning Predictive models Random variables STARIMA Telecommunication traffic Traffic control Traffic flow network Vectors |
Title | The application of space-time ARIMA model on traffic flow forecasting |
URI | https://ieeexplore.ieee.org/document/5212785 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7anjxVbcU3e_DotnltNjmW0tKKEZEKvZV9zIIojdQUwV_vbB71gQdv2YSQ7Gays9_OfN8QchWDtkr6nEXKkwxdgGAykYpJqxSaSOJB5AjO2V08e4xulnzZItc7LgwAlMlnMHCHZSzf5HrrtsqGjmcqEt4mbQRuFVdrt5_ipMFFLSVVtgUCj7JgXuDHHkMotmx4XaFAx9TIPdXtsCHUeOlwPs5ux5WUZf3EH6VXSs8z7ZKseecq4eR5sC3UQH_8knP8b6f2Sf-L40fvd97rgLRgfUi6TZEHWv_zPTJBQ6Lfwtw0txRnIQ3MlaWno4d5NqJlPR2KF4uNdJoU1L7k7xTXw6Dlm0us7pPFdLIYz1hde4E94YKiYIFVViM41Mb4QmgL-O0URwwLTlA-EjG3ofEscC59hZDJKJMExku0kgE3EB6RzjpfwzGhOGdYLw0j7UUqUilXiPHwthgQe8c2lSek5wZl9Vqpa6zq8Tj9-_QZ2aviOS5h9px0is0WLnBZUKjL0h4-AVMzr84 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKOcCpQIvY8YEjbp3FcXKsqqIWmgqhIvVWeZUQqEElFRJfzzhLWcSBW5woSuxMPH6eeW8QuoqMslJ4jISSCgIugBMRC0mElRJMJKYmdATndBqNHsPbOZs30PWGC2OMKZLPTNcdFrF8nam12yrrOZ4pj9kW2ga_z_ySrbXZUXHi4LwSkyraHKBHUTLP9yJKAIzNa2ZXwME11YJPVTuoKTU06Y0H6WRQillWz_xRfKXwPTctlNZvXaacPHfXueyqj1-Cjv_t1h7qfLH88P3Gf-2jhlkeoFZd5gFXf30bDcGU8LdAN84shnlIGeIK0-P-wzjt46KiDoaL-Uo4VQpsX7J3DCtio8SbS63uoNnNcDYYkar6AnmCJUVOfCutAniotPY4V9bA15MMUKxxkvIhj5gNNLWGMeFJAE1a6tjXNFZS-Eyb4BA1l9nSHCEMs4alSRAqGspQJkwCyoPbIgPoO7KJOEZtNyiL11JfY1GNx8nfpy_RzmiWThaT8fTuFO2W0R2XPnuGmvlqbc5hkZDLi8I2PgG57bMY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=The+application+of+space-time+ARIMA+model+on+traffic+flow+forecasting&rft.au=Shu-Lan+Lin&rft.au=Hong-Qiong+Huang&rft.au=Da-Qi+Zhu&rft.au=Tian-Zhen+Wang&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=6&rft.spage=3408&rft.epage=3412&rft_id=info:doi/10.1109%2FICMLC.2009.5212785&rft.externalDocID=5212785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |