Nested Dirichlet process for collaborative mobility modeling
Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an understanding of past mobile user movements, but also enables us to predict how a mobile user might move in the future. It has been found...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 3095 - 3101 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an understanding of past mobile user movements, but also enables us to predict how a mobile user might move in the future. It has been found useful in both infrastructure-based wireless network and ad hoc network for protocol evaluation, resource planning, etc. A nonparametric hierarchical Bayesian approach is proposed in this paper for extracting hierarchical mobility patterns from mobile user traces. Experiment results show that the proposed method is able to generate a hierarchical mobility model that better reflect the mobility pattern structure in many scenarios. It also has better future movement prediction compared to the hidden Markov model. |
---|---|
AbstractList | Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an understanding of past mobile user movements, but also enables us to predict how a mobile user might move in the future. It has been found useful in both infrastructure-based wireless network and ad hoc network for protocol evaluation, resource planning, etc. A nonparametric hierarchical Bayesian approach is proposed in this paper for extracting hierarchical mobility patterns from mobile user traces. Experiment results show that the proposed method is able to generate a hierarchical mobility model that better reflect the mobility pattern structure in many scenarios. It also has better future movement prediction compared to the hidden Markov model. |
Author | Zhen Zhang Yi-Qun Ding Bin Xu |
Author_xml | – sequence: 1 surname: Yi-Qun Ding fullname: Yi-Qun Ding organization: Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China – sequence: 2 surname: Zhen Zhang fullname: Zhen Zhang organization: Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China – sequence: 3 surname: Bin Xu fullname: Bin Xu organization: Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China |
BookMark | eNo1UMFKxDAUjLgLbtf-gF76A615eUnagBepqy5UvSh4W9LmRSPddmmLsH9vwXUuM3OYYZiILbq-I8augGcA3Nxsy-eqzATnJlMChBZ4xiKQQkrMOYpzFpu8-PcCF2wlQPMUED-WLJpzhQEwSlyweBy_-QypRK5xxW5faJzIJfdhCM1XS1NyGPqGxjHx_ZA0fdvauh_sFH4o2fd1aMN0nIWjNnSfl2zpbTtSfOI1e3_YvJVPafX6uC3vqjRArqZU-MKjJGE4OeWwnqd4zY1rAHUtuVVgsdbSaQJQJidOjbUNeW5yo3HOrtn1X28got1hCHs7HHenJ_AXd-BPdg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212623 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 3101 |
ExternalDocumentID | 5212623 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-2f8f34e290ed5d3b119f609dc136b40a51a3b64d6e11597e0ecaacef0979638f3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:20:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-2f8f34e290ed5d3b119f609dc136b40a51a3b64d6e11597e0ecaacef0979638f3 |
PageCount | 7 |
ParticipantIDs | ieee_primary_5212623 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.4196553 |
Snippet | Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3095 |
SubjectTerms | Ad hoc networks Bayesian methods Cities and towns Collaboration Collaborative filtering Cybernetics Hidden Markov models Hierarchical Bayesian model Land mobile radio cellular systems Machine learning Mathematical model Mobility modeling Nested Chinese restaurant process Nonparametric Bayesian model Predictive models |
Title | Nested Dirichlet process for collaborative mobility modeling |
URI | https://ieeexplore.ieee.org/document/5212623 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgKtIi3PDDiNolTu5bYKlBBtGKgUrcqts-iQrQVapHg13NxkvIQA1ucIQ_Hl--78313ABfeEW2TxnFPcM4JoQXXWglONqkTJ1ycBqHwaCyHk_Ru2pvW4HKrhUHEkHyGnfww7OW7pd3kobJurjMluK5DnRy3Qqu1jafkpcFVWUoqjBU5HqFhXhLLiJMrNq10XUIRMFXlnsqxqAQ1ke7eDkb3g6KUZXnHH61XAvLcNGFUPXORcPLc2axNx378Kuf435fahfaXxo89bNFrD2q42Idm1eSBlTbfgqtxiIgy-jfO7RN9ZbYqtAWM6C77tozekL0sQ6rtOwv9deiybZjcXD8OhrxsucDnxCPWPPF9L1JMdISu54SJY-1lpJ2NhTRplPXiTBiZOonEJLXCCG2WWfSRVrkle3EAjcVygYfAlHVEvjATKHXqhDbotTc2k31lyMczR9DKJ2O2KqpqzMp5OP779AnsFPs4eaLsKTTWrxs8IzqwNudhHXwC2rKsyQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEbRIndi2xVaAWmoqhlbpVcXwWFaKtUIoEv56Lk5SHGNjiDHk4vnzfne-7I-TKGqRtQhtmEc4ZIjRnSknO0CZVYLjxQycUjkeiPwnvp9G0Rq43WhgAcMln0M4P3V6-WabrPFTWyXWmCNdbZBtxP_ILtdYmopIXB5dlMSk3luh6uJZ5gS88hs7YtFJ2cYnQVBV8Kse8ktR4qjPoxcNeUcyyvOeP5isOe-4aJK6eukg5eW6vM91OP34VdPzva-2R1pfKjz5u8Guf1GBxQBpVmwdaWn2T3IxcTJTi33GePuF3pqtCXUCR8NJvC-kN6MvSJdu-U9dhBy_bIpO723Gvz8qmC2yOTCJjge1aHkKgPDCR4dr3lRWeMqnPhQ69JPITrkVoBCCXVBI8SJMkBespmduy5Yekvlgu4IhQmRqkX5BwECo0XGmwyuo0EV2p0cvTx6SZT8ZsVdTVmJXzcPL36Uuy0x_Hw9lwMHo4JbvFrk6eNntG6tnrGs6RHGT6wq2JTxVssBI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Nested+Dirichlet+process+for+collaborative+mobility+modeling&rft.au=Yi-Qun+Ding&rft.au=Zhen+Zhang&rft.au=Bin+Xu&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=3095&rft.epage=3101&rft_id=info:doi/10.1109%2FICMLC.2009.5212623&rft.externalDocID=5212623 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |