Nested Dirichlet process for collaborative mobility modeling

Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an understanding of past mobile user movements, but also enables us to predict how a mobile user might move in the future. It has been found...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 3095 - 3101
Main Authors Yi-Qun Ding, Zhen Zhang, Bin Xu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an understanding of past mobile user movements, but also enables us to predict how a mobile user might move in the future. It has been found useful in both infrastructure-based wireless network and ad hoc network for protocol evaluation, resource planning, etc. A nonparametric hierarchical Bayesian approach is proposed in this paper for extracting hierarchical mobility patterns from mobile user traces. Experiment results show that the proposed method is able to generate a hierarchical mobility model that better reflect the mobility pattern structure in many scenarios. It also has better future movement prediction compared to the hidden Markov model.
AbstractList Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an understanding of past mobile user movements, but also enables us to predict how a mobile user might move in the future. It has been found useful in both infrastructure-based wireless network and ad hoc network for protocol evaluation, resource planning, etc. A nonparametric hierarchical Bayesian approach is proposed in this paper for extracting hierarchical mobility patterns from mobile user traces. Experiment results show that the proposed method is able to generate a hierarchical mobility model that better reflect the mobility pattern structure in many scenarios. It also has better future movement prediction compared to the hidden Markov model.
Author Zhen Zhang
Yi-Qun Ding
Bin Xu
Author_xml – sequence: 1
  surname: Yi-Qun Ding
  fullname: Yi-Qun Ding
  organization: Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China
– sequence: 2
  surname: Zhen Zhang
  fullname: Zhen Zhang
  organization: Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China
– sequence: 3
  surname: Bin Xu
  fullname: Bin Xu
  organization: Coll. of Comput. Sci. & Technol., Zhejiang Univ., Hangzhou, China
BookMark eNo1UMFKxDAUjLgLbtf-gF76A615eUnagBepqy5UvSh4W9LmRSPddmmLsH9vwXUuM3OYYZiILbq-I8augGcA3Nxsy-eqzATnJlMChBZ4xiKQQkrMOYpzFpu8-PcCF2wlQPMUED-WLJpzhQEwSlyweBy_-QypRK5xxW5faJzIJfdhCM1XS1NyGPqGxjHx_ZA0fdvauh_sFH4o2fd1aMN0nIWjNnSfl2zpbTtSfOI1e3_YvJVPafX6uC3vqjRArqZU-MKjJGE4OeWwnqd4zY1rAHUtuVVgsdbSaQJQJidOjbUNeW5yo3HOrtn1X28got1hCHs7HHenJ_AXd-BPdg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212623
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 3101
ExternalDocumentID 5212623
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2f8f34e290ed5d3b119f609dc136b40a51a3b64d6e11597e0ecaacef0979638f3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:37 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2f8f34e290ed5d3b119f609dc136b40a51a3b64d6e11597e0ecaacef0979638f3
PageCount 7
ParticipantIDs ieee_primary_5212623
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.4196553
Snippet Mobility modeling is the mathematical modeling of mobile users' (cars, cell phone users) movement patterns. The resulting model not only provides us with an...
SourceID ieee
SourceType Publisher
StartPage 3095
SubjectTerms Ad hoc networks
Bayesian methods
Cities and towns
Collaboration
Collaborative filtering
Cybernetics
Hidden Markov models
Hierarchical Bayesian model
Land mobile radio cellular systems
Machine learning
Mathematical model
Mobility modeling
Nested Chinese restaurant process
Nonparametric Bayesian model
Predictive models
Title Nested Dirichlet process for collaborative mobility modeling
URI https://ieeexplore.ieee.org/document/5212623
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nZgKtIi3PDDiNolTu5bYKlBBtGKgUrcqts-iQrQVapHg13NxkvIQA1ucIQ_Hl--78313ABfeEW2TxnFPcM4JoQXXWglONqkTJ1ycBqHwaCyHk_Ru2pvW4HKrhUHEkHyGnfww7OW7pd3kobJurjMluK5DnRy3Qqu1jafkpcFVWUoqjBU5HqFhXhLLiJMrNq10XUIRMFXlnsqxqAQ1ke7eDkb3g6KUZXnHH61XAvLcNGFUPXORcPLc2axNx378Kuf435fahfaXxo89bNFrD2q42Idm1eSBlTbfgqtxiIgy-jfO7RN9ZbYqtAWM6C77tozekL0sQ6rtOwv9deiybZjcXD8OhrxsucDnxCPWPPF9L1JMdISu54SJY-1lpJ2NhTRplPXiTBiZOonEJLXCCG2WWfSRVrkle3EAjcVygYfAlHVEvjATKHXqhDbotTc2k31lyMczR9DKJ2O2KqpqzMp5OP779AnsFPs4eaLsKTTWrxs8IzqwNudhHXwC2rKsyQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEbRIndi2xVaAWmoqhlbpVcXwWFaKtUIoEv56Lk5SHGNjiDHk4vnzfne-7I-TKGqRtQhtmEc4ZIjRnSknO0CZVYLjxQycUjkeiPwnvp9G0Rq43WhgAcMln0M4P3V6-WabrPFTWyXWmCNdbZBtxP_ILtdYmopIXB5dlMSk3luh6uJZ5gS88hs7YtFJ2cYnQVBV8Kse8ktR4qjPoxcNeUcyyvOeP5isOe-4aJK6eukg5eW6vM91OP34VdPzva-2R1pfKjz5u8Guf1GBxQBpVmwdaWn2T3IxcTJTi33GePuF3pqtCXUCR8NJvC-kN6MvSJdu-U9dhBy_bIpO723Gvz8qmC2yOTCJjge1aHkKgPDCR4dr3lRWeMqnPhQ69JPITrkVoBCCXVBI8SJMkBespmduy5Yekvlgu4IhQmRqkX5BwECo0XGmwyuo0EV2p0cvTx6SZT8ZsVdTVmJXzcPL36Uuy0x_Hw9lwMHo4JbvFrk6eNntG6tnrGs6RHGT6wq2JTxVssBI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Nested+Dirichlet+process+for+collaborative+mobility+modeling&rft.au=Yi-Qun+Ding&rft.au=Zhen+Zhang&rft.au=Bin+Xu&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=3095&rft.epage=3101&rft_id=info:doi/10.1109%2FICMLC.2009.5212623&rft.externalDocID=5212623
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon