Medical data mining using BGA and RGA for weighting of features in fuzzy k-NN classification

The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and effectiveness. In this study, all of features and optimal feature subsets with three features are investigated. For classification, crisp k-NN, fuzzy...

Full description

Saved in:
Bibliographic Details
Published in2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 3070 - 3075
Main Authors Ping-Hung Tang, Ming-Hseng Tseng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and effectiveness. In this study, all of features and optimal feature subsets with three features are investigated. For classification, crisp k-NN, fuzzy k-NN, and weighting fuzzy k-NN classifiers are compared. For weighting of features, two types of coding including binary-coded genetic algorithms (BGA) and real-coded genetic algorithms (RGA) are evaluated. Experiments are conducted on the Wisconsin diagnosis breast cancer (WDBC) dataset and the Pima (PIMA) Indians diabetes dataset, and the classification accuracy, false negative, and computation time are reported in this paper.
AbstractList The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and effectiveness. In this study, all of features and optimal feature subsets with three features are investigated. For classification, crisp k-NN, fuzzy k-NN, and weighting fuzzy k-NN classifiers are compared. For weighting of features, two types of coding including binary-coded genetic algorithms (BGA) and real-coded genetic algorithms (RGA) are evaluated. Experiments are conducted on the Wisconsin diagnosis breast cancer (WDBC) dataset and the Pima (PIMA) Indians diabetes dataset, and the classification accuracy, false negative, and computation time are reported in this paper.
Author Ming-Hseng Tseng
Ping-Hung Tang
Author_xml – sequence: 1
  surname: Ping-Hung Tang
  fullname: Ping-Hung Tang
  organization: Grad. Inst. of Appl. Inf. Sci., Chung-Shan Med. Univ., China
– sequence: 2
  surname: Ming-Hseng Tseng
  fullname: Ming-Hseng Tseng
BookMark eNo1UM1OAjEYrBESAXkBvfQFFvv1Z9secSNIApgYTTyYkLJtsQpds11i4OldIs5hJpPJzGH6qBOr6BC6ATICIPpuVizmxYgSokeCAs0Zu0B94JRzJgmjl2iopfr3lHVQj0JOMmDsrYv6bU9pAC3oFRqm9ElacEFlznrofeFsKM0WW9MYvAsxxA3epxPfT8fYRIufW_VVjX9c2Hw0p6Ty2DvT7GuXcIjY74_HA_7Klktcbk1KwbeLTajiNep6s01ueNYBep08vBSP2fxpOivG8yyAFE1GvSit9VbJUipeCmqUI-AVVYIb6cH6nJPcU20dX3MDEhg4LSB3olTMrtkA3f7tBufc6rsOO1MfVuen2C9ldFlv
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLC.2009.5212633
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424437032
9781424437030
EndPage 3075
ExternalDocumentID 5212633
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2f5cddfd87c784c52a8e01f82854a7f1df6406f29de4b4a17131e9516e5c83db3
IEDL.DBID RIE
ISBN 9781424437023
1424437024
ISSN 2160-133X
IngestDate Wed Aug 27 02:20:37 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2008911952
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2f5cddfd87c784c52a8e01f82854a7f1df6406f29de4b4a17131e9516e5c83db3
PageCount 6
ParticipantIDs ieee_primary_5212633
PublicationCentury 2000
PublicationDate 2009-July
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-July
PublicationDecade 2000
PublicationTitle 2009 International Conference on Machine Learning and Cybernetics
PublicationTitleAbbrev ICMLC
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452763
ssj0000744891
Score 1.5011046
Snippet The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and...
SourceID ieee
SourceType Publisher
StartPage 3070
SubjectTerms Binary-coded genetic algorithms
Breast cancer
Cancer detection
Crisp k-NN
Cybernetics
Data mining
Diabetes
Electronic mail
Fuzzy k-NN
Genetic algorithms
Gradient methods
Machine learning
Medical diagnostic imaging
Real-coded genetic algorithms
Weighting fuzzy k-NN
Title Medical data mining using BGA and RGA for weighting of features in fuzzy k-NN classification
URI https://ieeexplore.ieee.org/document/5212633
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuI3OXg0Wz_SJD3qcE5xQ8TBDsLIp4xhJ9oi7q83SduJ4sFL27SHpuGV93t5v_d7AJwRLVkgBEOE2wMWnCORco1oEEhq8UEkvE7BeEJGU3w7S2YNcL6phdFae_KZ7rlLn8tXK1m4rbK-qzMlcdwETRu4lbVam_0UJw1OKykpP6Y28PAN86KQBMiGYrO6rium1jHVck_VOK4LaoK0fzMY3w1KKcvqjT9ar3jPM2yDcT3nknCy7BW56Mn1LznH_37UNuh-1_jB-4332gENne2Cdt3kAVb_fAc8Vakc6Lik8MX3k4COLf8ML68vIM8UfLBni33hh99mdU9WBhrtJUPf4SKDplivP-ESTSZQOrTu6EneIrpgOrx6HIxQ1ZIBLSzOyFFkEqmUUYxKyrBMIs50EBong4c5NaEyxCIEE6VKY4F5aEPgUFsQR3QiWaxEvAda2SrT-wBippmQLFFMJNgoIgSxhsEoDwNl46z4AHTcYs1fS9WNebVOh3_fPgJbZZ7HEWmPQSt_K_SJhQu5OPV28gVMt7cc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbZ62O0JFaaGJEGqlDkiVn6iqSBEkQvTXYztJEYiBJYmTIY510X3n--47AC6Q5MRljDiI6kPIKHVYl0oHuy7HGh_4zOoUxAkaTMK7aTStgct1LYyU0pLPZNtc2ly-WPLcbJV1TJ0pCoINsKn9fuQV1VrrHRUjDo5LMSk7xjr0sC3zfA-5jg7GplVlV4C1a6oEn8pxUJXUuN3OsBePeoWYZfnOH81XrO_pN0BczbqgnCzaecbafPVL0PG_n7UDWt9VfvBh7b92QU2me6BRtXmA5V_fBE9lMgcaNil8sR0loOHLP8Pr2ytIUwEf9VmjX_hhN1rNk6WCSlrR0Hc4T6HKV6tPuHCSBHKD1w1BydpEC0z6N-PewCmbMjhzjTQyx1cRF0IJgjkmIY98SqTrKSOEF1KsPKGQxgjK7woZspB6Ogj2pIZxSEacBIIF-6CeLlN5AGBIJGGcRIKwKFQCMYa0aRBMPVfoSCs4BE2zWLPXQndjVq7T0d-3z8HWYByPZqNhcn8Mtousj6HVnoB69pbLUw0eMnZmbeYLETe6ZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Medical+data+mining+using+BGA+and+RGA+for+weighting+of+features+in+fuzzy+k-NN+classification&rft.au=Ping-Hung+Tang&rft.au=Ming-Hseng+Tseng&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=3070&rft.epage=3075&rft_id=info:doi/10.1109%2FICMLC.2009.5212633&rft.externalDocID=5212633
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon