Medical data mining using BGA and RGA for weighting of features in fuzzy k-NN classification
The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and effectiveness. In this study, all of features and optimal feature subsets with three features are investigated. For classification, crisp k-NN, fuzzy...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 5; pp. 3070 - 3075 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and effectiveness. In this study, all of features and optimal feature subsets with three features are investigated. For classification, crisp k-NN, fuzzy k-NN, and weighting fuzzy k-NN classifiers are compared. For weighting of features, two types of coding including binary-coded genetic algorithms (BGA) and real-coded genetic algorithms (RGA) are evaluated. Experiments are conducted on the Wisconsin diagnosis breast cancer (WDBC) dataset and the Pima (PIMA) Indians diabetes dataset, and the classification accuracy, false negative, and computation time are reported in this paper. |
---|---|
AbstractList | The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and effectiveness. In this study, all of features and optimal feature subsets with three features are investigated. For classification, crisp k-NN, fuzzy k-NN, and weighting fuzzy k-NN classifiers are compared. For weighting of features, two types of coding including binary-coded genetic algorithms (BGA) and real-coded genetic algorithms (RGA) are evaluated. Experiments are conducted on the Wisconsin diagnosis breast cancer (WDBC) dataset and the Pima (PIMA) Indians diabetes dataset, and the classification accuracy, false negative, and computation time are reported in this paper. |
Author | Ming-Hseng Tseng Ping-Hung Tang |
Author_xml | – sequence: 1 surname: Ping-Hung Tang fullname: Ping-Hung Tang organization: Grad. Inst. of Appl. Inf. Sci., Chung-Shan Med. Univ., China – sequence: 2 surname: Ming-Hseng Tseng fullname: Ming-Hseng Tseng |
BookMark | eNo1UM1OAjEYrBESAXkBvfQFFvv1Z9secSNIApgYTTyYkLJtsQpds11i4OldIs5hJpPJzGH6qBOr6BC6ATICIPpuVizmxYgSokeCAs0Zu0B94JRzJgmjl2iopfr3lHVQj0JOMmDsrYv6bU9pAC3oFRqm9ElacEFlznrofeFsKM0WW9MYvAsxxA3epxPfT8fYRIufW_VVjX9c2Hw0p6Ty2DvT7GuXcIjY74_HA_7Klktcbk1KwbeLTajiNep6s01ueNYBep08vBSP2fxpOivG8yyAFE1GvSit9VbJUipeCmqUI-AVVYIb6cH6nJPcU20dX3MDEhg4LSB3olTMrtkA3f7tBufc6rsOO1MfVuen2C9ldFlv |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICMLC.2009.5212633 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 1424437032 9781424437030 |
EndPage | 3075 |
ExternalDocumentID | 5212633 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-2f5cddfd87c784c52a8e01f82854a7f1df6406f29de4b4a17131e9516e5c83db3 |
IEDL.DBID | RIE |
ISBN | 9781424437023 1424437024 |
ISSN | 2160-133X |
IngestDate | Wed Aug 27 02:20:37 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCN | 2008911952 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-2f5cddfd87c784c52a8e01f82854a7f1df6406f29de4b4a17131e9516e5c83db3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_5212633 |
PublicationCentury | 2000 |
PublicationDate | 2009-July |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: 2009-July |
PublicationDecade | 2000 |
PublicationTitle | 2009 International Conference on Machine Learning and Cybernetics |
PublicationTitleAbbrev | ICMLC |
PublicationYear | 2009 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000452763 ssj0000744891 |
Score | 1.5011046 |
Snippet | The k-nearest neighbor (k-NN) algorithm is commonly used in applications of classifiers and data mining and the related area due to its simplicity and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3070 |
SubjectTerms | Binary-coded genetic algorithms Breast cancer Cancer detection Crisp k-NN Cybernetics Data mining Diabetes Electronic mail Fuzzy k-NN Genetic algorithms Gradient methods Machine learning Medical diagnostic imaging Real-coded genetic algorithms Weighting fuzzy k-NN |
Title | Medical data mining using BGA and RGA for weighting of features in fuzzy k-NN classification |
URI | https://ieeexplore.ieee.org/document/5212633 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA_bTp6mbuI3OXg0Wz_SJD3qcE5xQ8TBDsLIp4xhJ9oi7q83SduJ4sFL27SHpuGV93t5v_d7AJwRLVkgBEOE2wMWnCORco1oEEhq8UEkvE7BeEJGU3w7S2YNcL6phdFae_KZ7rlLn8tXK1m4rbK-qzMlcdwETRu4lbVam_0UJw1OKykpP6Y28PAN86KQBMiGYrO6rium1jHVck_VOK4LaoK0fzMY3w1KKcvqjT9ar3jPM2yDcT3nknCy7BW56Mn1LznH_37UNuh-1_jB-4332gENne2Cdt3kAVb_fAc8Vakc6Lik8MX3k4COLf8ML68vIM8UfLBni33hh99mdU9WBhrtJUPf4SKDplivP-ESTSZQOrTu6EneIrpgOrx6HIxQ1ZIBLSzOyFFkEqmUUYxKyrBMIs50EBong4c5NaEyxCIEE6VKY4F5aEPgUFsQR3QiWaxEvAda2SrT-wBippmQLFFMJNgoIgSxhsEoDwNl46z4AHTcYs1fS9WNebVOh3_fPgJbZZ7HEWmPQSt_K_SJhQu5OPV28gVMt7cc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbZ62O0JFaaGJEGqlDkiVn6iqSBEkQvTXYztJEYiBJYmTIY510X3n--47AC6Q5MRljDiI6kPIKHVYl0oHuy7HGh_4zOoUxAkaTMK7aTStgct1LYyU0pLPZNtc2ly-WPLcbJV1TJ0pCoINsKn9fuQV1VrrHRUjDo5LMSk7xjr0sC3zfA-5jg7GplVlV4C1a6oEn8pxUJXUuN3OsBePeoWYZfnOH81XrO_pN0BczbqgnCzaecbafPVL0PG_n7UDWt9VfvBh7b92QU2me6BRtXmA5V_fBE9lMgcaNil8sR0loOHLP8Pr2ytIUwEf9VmjX_hhN1rNk6WCSlrR0Hc4T6HKV6tPuHCSBHKD1w1BydpEC0z6N-PewCmbMjhzjTQyx1cRF0IJgjkmIY98SqTrKSOEF1KsPKGQxgjK7woZspB6Ogj2pIZxSEacBIIF-6CeLlN5AGBIJGGcRIKwKFQCMYa0aRBMPVfoSCs4BE2zWLPXQndjVq7T0d-3z8HWYByPZqNhcn8Mtousj6HVnoB69pbLUw0eMnZmbeYLETe6ZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Machine+Learning+and+Cybernetics&rft.atitle=Medical+data+mining+using+BGA+and+RGA+for+weighting+of+features+in+fuzzy+k-NN+classification&rft.au=Ping-Hung+Tang&rft.au=Ming-Hseng+Tseng&rft.date=2009-07-01&rft.pub=IEEE&rft.isbn=9781424437023&rft.issn=2160-133X&rft.volume=5&rft.spage=3070&rft.epage=3075&rft_id=info:doi/10.1109%2FICMLC.2009.5212633&rft.externalDocID=5212633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-133X&client=summon |