Unsupervised learning of object features from video sequences
We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input images typically contain single or multiple objects that change in pose, scale and degree of occlusion. Also, the objects can move significantly...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 1142 - 1149 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input images typically contain single or multiple objects that change in pose, scale and degree of occlusion. Also, the objects can move significantly between consecutive frames. The content of an input sequence is unlabeled so the learner has to cluster the data based on the data's implicit coherence over time and space. Our approach takes advantage of the dependent pairwise co-occurrences of objects' features within local neighborhoods vs. the independent behavior of unrelated features. We couple or decouple pairs of features based on a probabilistic interpretation of their pairwise statistics and then extract objects as connected components of features. |
---|---|
AbstractList | We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input images typically contain single or multiple objects that change in pose, scale and degree of occlusion. Also, the objects can move significantly between consecutive frames. The content of an input sequence is unlabeled so the learner has to cluster the data based on the data's implicit coherence over time and space. Our approach takes advantage of the dependent pairwise co-occurrences of objects' features within local neighborhoods vs. the independent behavior of unrelated features. We couple or decouple pairs of features based on a probabilistic interpretation of their pairwise statistics and then extract objects as connected components of features. |
Author | Leordeanu, M. Collins, R. |
Author_xml | – sequence: 1 givenname: M. surname: Leordeanu fullname: Leordeanu, M. organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA – sequence: 2 givenname: R. surname: Collins fullname: Collins, R. organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA |
BookMark | eNpNjM1Kw0AURgetYFu7dOVmXiBx_u5k7sKFBKtCQRHrtkxmbiSlTWomKfj2FnThdxZnceCbsUnbtcTYtRS5lAJvy4_Xt1wJAbkGPGNTKazOLEo8ZzNRWASlC6Um_8IlW6S0Fadp1M6oKbtbt2k8UH9sEkW-I9-3TfvJu5p31ZbCwGvyw9hT4nXf7fmxidTxRF8jtYHSFbuo_S7R4s9ztl4-vJdP2erl8bm8X2WNLGDIVASsT0QHUJlCuwoDWOtRGyIfoKqwsgZIoHMGnQILMrgQI0Utauf1nN38_jZEtDn0zd733xtpbKER9A9W5kv6 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.359 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 1149 vol. 1 |
ExternalDocumentID | 1467395 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-2d59f9f9d855b4738b9c566a934eeac5bb9b645e098849825651c8cdded30f8a3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-2d59f9f9d855b4738b9c566a934eeac5bb9b645e098849825651c8cdded30f8a3 |
ParticipantIDs | ieee_primary_1467395 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.7162597 |
Snippet | We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1142 |
SubjectTerms | Computer Society Computer vision Pattern recognition Unsupervised learning Video sequences |
Title | Unsupervised learning of object features from video sequences |
URI | https://ieeexplore.ieee.org/document/1467395 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm9SP2gNTRVUhgSpEUbcqfgQhpKYiycKv5-w8ihADyhJfMiSX-Pzd-e47hG4iIaeOc00AfTPCYssIgCNJuFZCmZilzoZsiyexWLGHNV930G1bC-OcC8lnbuRPw16-zUzpQ2VjP6up4l3UBcetqtVq4ym-xlTWbp4fU_BshGp3FCa-G0vY-RSUCBWryoVX3F-Y1Ew8zVjtyTjHs9flcxV6oZ7P9EcLlrACzfvosXn2KvHkY1QWemS-ftE6_vflDtFwX-uHl-0qdoQ6bnuM-jU4xfXUz0HU9H9oZAN0t9rm5c4bmxxurftPvOEsxZn24R2cukAbmmNfxIJ9xV-G29ztIVrN719mC1K3YyDvgDEKMrFcpXBYCd-WTanUygAYTBRlDsw311ppwbiLlJRMgecpeGykAftpaZTKhJ6g3jbbulOEHSg7suCrGQVwzE4TmwimHQwT5SJjztDAK2izqxg3NrVuzv8WX6CDQKgaAiOXqFd8lu4KoEKhr8M_8g130bUg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbdLYrj0wVaACbVWhFnWr4kcQQkoqkiz8es5OmiLEgLLElwyJE_u-e32H0I3P-MBQKj1A38QjgSYegCPuUSmYUAGJjXbZFlM2WpCnJV020G1dC2OMcclnpmtPXSxfp6qwrrKeXdWhoDtoF_Q-DcpqrdqjYqtMeWXo2XEItg0TdUyhb_uxuNgnCz0mAlEa8YLaC_2Ki2czFls6zt7wdfZSOl9Cy2j6owmL00EPLTTZPH2ZevLRLXLZVV-_iB3_-3oHqLOt9sOzWo8dooZJjlCrgqe4WvwZiDYdIDayNrpbJFmxtttNBrdWHSjecBrjVFoHD46NIw7NsC1jwbbmL8V19nYHLR7u58ORVzVk8N4BZeReX1MRw6E5fF0yCLkUCuBgJEJiYAOnUgrJCDW-4JwIsD0ZDRRXsIPq0I95FB6jZpIm5gRhA5Pta7DWlABApgeRjhiRBoaRML5Sp6htJ2i1Ljk3VtXcnP0tvkZ7o_lkvBo_Tp_P0b6jV3VukgvUzD8LcwnAIZdX7n_5BiHZuGk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Unsupervised+learning+of+object+features+from+video+sequences&rft.au=Leordeanu%2C+M.&rft.au=Collins%2C+R.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=1142&rft.epage=1149+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.359&rft.externalDocID=1467395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |