Unsupervised learning of object features from video sequences

We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input images typically contain single or multiple objects that change in pose, scale and degree of occlusion. Also, the objects can move significantly...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 1142 - 1149 vol. 1
Main Authors Leordeanu, M., Collins, R.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input images typically contain single or multiple objects that change in pose, scale and degree of occlusion. Also, the objects can move significantly between consecutive frames. The content of an input sequence is unlabeled so the learner has to cluster the data based on the data's implicit coherence over time and space. Our approach takes advantage of the dependent pairwise co-occurrences of objects' features within local neighborhoods vs. the independent behavior of unrelated features. We couple or decouple pairs of features based on a probabilistic interpretation of their pairwise statistics and then extract objects as connected components of features.
AbstractList We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input images typically contain single or multiple objects that change in pose, scale and degree of occlusion. Also, the objects can move significantly between consecutive frames. The content of an input sequence is unlabeled so the learner has to cluster the data based on the data's implicit coherence over time and space. Our approach takes advantage of the dependent pairwise co-occurrences of objects' features within local neighborhoods vs. the independent behavior of unrelated features. We couple or decouple pairs of features based on a probabilistic interpretation of their pairwise statistics and then extract objects as connected components of features.
Author Leordeanu, M.
Collins, R.
Author_xml – sequence: 1
  givenname: M.
  surname: Leordeanu
  fullname: Leordeanu, M.
  organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
– sequence: 2
  givenname: R.
  surname: Collins
  fullname: Collins, R.
  organization: Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
BookMark eNpNjM1Kw0AURgetYFu7dOVmXiBx_u5k7sKFBKtCQRHrtkxmbiSlTWomKfj2FnThdxZnceCbsUnbtcTYtRS5lAJvy4_Xt1wJAbkGPGNTKazOLEo8ZzNRWASlC6Um_8IlW6S0Fadp1M6oKbtbt2k8UH9sEkW-I9-3TfvJu5p31ZbCwGvyw9hT4nXf7fmxidTxRF8jtYHSFbuo_S7R4s9ztl4-vJdP2erl8bm8X2WNLGDIVASsT0QHUJlCuwoDWOtRGyIfoKqwsgZIoHMGnQILMrgQI0Utauf1nN38_jZEtDn0zd733xtpbKER9A9W5kv6
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.359
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 1149 vol. 1
ExternalDocumentID 1467395
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-2d59f9f9d855b4738b9c566a934eeac5bb9b645e098849825651c8cdded30f8a3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2d59f9f9d855b4738b9c566a934eeac5bb9b645e098849825651c8cdded30f8a3
ParticipantIDs ieee_primary_1467395
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.7162597
Snippet We develop an efficient algorithm for unsupervised learning of object models as constellations of features, from low resolution video sequences. The input...
SourceID ieee
SourceType Publisher
StartPage 1142
SubjectTerms Computer Society
Computer vision
Pattern recognition
Unsupervised learning
Video sequences
Title Unsupervised learning of object features from video sequences
URI https://ieeexplore.ieee.org/document/1467395
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkwFWsRbHhhxm9SP2gNTRVUhgSpEUbcqfgQhpKYiycKv5-w8ihADyhJfMiSX-Pzd-e47hG4iIaeOc00AfTPCYssIgCNJuFZCmZilzoZsiyexWLGHNV930G1bC-OcC8lnbuRPw16-zUzpQ2VjP6up4l3UBcetqtVq4ym-xlTWbp4fU_BshGp3FCa-G0vY-RSUCBWryoVX3F-Y1Ew8zVjtyTjHs9flcxV6oZ7P9EcLlrACzfvosXn2KvHkY1QWemS-ftE6_vflDtFwX-uHl-0qdoQ6bnuM-jU4xfXUz0HU9H9oZAN0t9rm5c4bmxxurftPvOEsxZn24R2cukAbmmNfxIJ9xV-G29ztIVrN719mC1K3YyDvgDEKMrFcpXBYCd-WTanUygAYTBRlDsw311ppwbiLlJRMgecpeGykAftpaZTKhJ6g3jbbulOEHSg7suCrGQVwzE4TmwimHQwT5SJjztDAK2izqxg3NrVuzv8WX6CDQKgaAiOXqFd8lu4KoEKhr8M_8g130bUg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkbdLYrj0wVaACbVWhFnWr4kcQQkoqkiz8es5OmiLEgLLElwyJE_u-e32H0I3P-MBQKj1A38QjgSYegCPuUSmYUAGJjXbZFlM2WpCnJV020G1dC2OMcclnpmtPXSxfp6qwrrKeXdWhoDtoF_Q-DcpqrdqjYqtMeWXo2XEItg0TdUyhb_uxuNgnCz0mAlEa8YLaC_2Ki2czFls6zt7wdfZSOl9Cy2j6owmL00EPLTTZPH2ZevLRLXLZVV-_iB3_-3oHqLOt9sOzWo8dooZJjlCrgqe4WvwZiDYdIDayNrpbJFmxtttNBrdWHSjecBrjVFoHD46NIw7NsC1jwbbmL8V19nYHLR7u58ORVzVk8N4BZeReX1MRw6E5fF0yCLkUCuBgJEJiYAOnUgrJCDW-4JwIsD0ZDRRXsIPq0I95FB6jZpIm5gRhA5Pta7DWlABApgeRjhiRBoaRML5Sp6htJ2i1Ljk3VtXcnP0tvkZ7o_lkvBo_Tp_P0b6jV3VukgvUzD8LcwnAIZdX7n_5BiHZuGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Unsupervised+learning+of+object+features+from+video+sequences&rft.au=Leordeanu%2C+M.&rft.au=Collins%2C+R.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=1142&rft.epage=1149+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.359&rft.externalDocID=1467395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon