Application of local learning and biological activation functions to networks of neurons for motor control

Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and idealized activation functions. The neurons in these models frequently fail to incorporate measured spike rates and baseline, background firi...

Full description

Saved in:
Bibliographic Details
Published inFirst International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings pp. 233 - 236
Main Authors Hugh, G.S., Henriquez, C.S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and idealized activation functions. The neurons in these models frequently fail to incorporate measured spike rates and baseline, background firing and thus the neuronal outputs may be less useful for testing and developing analysis techniques that can eventually be used on experimental data. In this paper we present an approach for creating large-scale networks of neurons that include local learning and more biological features of neuronal spiking and demonstrate that the models are able to learn a generalized two-dimensional reaching task. This approach opens the possibility for the development of more biologically realistic network models with an increased capacity for adaptation, with a possible tradeoff of reduced learning rates.
AbstractList Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and idealized activation functions. The neurons in these models frequently fail to incorporate measured spike rates and baseline, background firing and thus the neuronal outputs may be less useful for testing and developing analysis techniques that can eventually be used on experimental data. In this paper we present an approach for creating large-scale networks of neurons that include local learning and more biological features of neuronal spiking and demonstrate that the models are able to learn a generalized two-dimensional reaching task. This approach opens the possibility for the development of more biologically realistic network models with an increased capacity for adaptation, with a possible tradeoff of reduced learning rates.
Author Hugh, G.S.
Henriquez, C.S.
Author_xml – sequence: 1
  givenname: G.S.
  surname: Hugh
  fullname: Hugh, G.S.
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
– sequence: 2
  givenname: C.S.
  surname: Henriquez
  fullname: Henriquez, C.S.
  organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA
BookMark eNotUEtPAyEQJlETbe3dxAt_YOsACyzHpqmPpNGLnhuWhYZKYcNSjf_e3bRzmO81-Q4zQ9cxRYvQA4ElIaCe1u-bJQVgo1KiAXKFZiAbYJJLxW7RYhgOMA5TXDJ1hw6rvg_e6OJTxMnhkIwOOFido497rGOHW59C2vvJ16b4n_OtO0UzkQGXhKMtvyl_D1NDtKc82S5lfExl3CbFklO4RzdOh8EuLjhHX8-bz_Vrtf14eVuvtpUnkpeKdtC1VlAmNWs4aYTQnNRa152FmlKnSTtmrqPC0YaI1lHOpQECVhlqhGJz9Hju9dbaXZ_9Uee_3eUd7B9eSVke
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CNE.2003.1196801
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EndPage 236
ExternalDocumentID 1196801
GroupedDBID 6IE
6IK
6IL
AAJGR
AAVQY
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2d0dbe6237a3851866a514aa4de0422fa1b237fd26f2816bf2557c010e9c2c693
IEDL.DBID RIE
ISBN 0780375793
9780780375796
IngestDate Wed Jun 26 19:26:39 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2d0dbe6237a3851866a514aa4de0422fa1b237fd26f2816bf2557c010e9c2c693
PageCount 4
ParticipantIDs ieee_primary_1196801
PublicationCentury 2000
PublicationDate 20030000
PublicationDateYYYYMMDD 2003-01-01
PublicationDate_xml – year: 2003
  text: 20030000
PublicationDecade 2000
PublicationTitle First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings
PublicationTitleAbbrev CNE
PublicationYear 2003
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000395739
Score 1.3333368
Snippet Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and...
SourceID ieee
SourceType Publisher
StartPage 233
SubjectTerms Artificial neural networks
Biological system modeling
Biomedical engineering
Biomedical measurements
Brain modeling
Decoding
Large-scale systems
Motor drives
Neurons
Testing
Title Application of local learning and biological activation functions to networks of neurons for motor control
URI https://ieeexplore.ieee.org/document/1196801
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyYeLeItD4iJpElcHHusqlYVUisGKnWrbOeMAJEgSAb49ZydNBWIgSVKHMmy7LPuvrvv7gi5ipMotUyYAMEFAhQFeOcc19VwDhBnwJVwucPzBZ8th3er21WH3LS5MADgyWcQulcfy88KUzlX2SBGcREuWWsnlbLO1Wr9KZELODHpkblwjV1R8JoCO5vvNkwZycF4MfHFQMNmzh_NVbxume6R-WZVNaXkJaxKHZqvXwUb_7vsfdLfZvHR-1Y_HZAO5IekN8oRZr9-0mvqyZ_eq94jz6NtIJsWlnoVR5uWEo9U5RmtyzW5M6UuGaJ25VKnF73o0rKgec0p_3Az-EKZOIxGMUVxwGfDiu-T5XTyMJ4FTRuG4AltizJIsijTgGZSqhjaZ4JzhVaWUsMMXAExq2KN_2yWcJuImGuLKCU1iPNAmsRwyY5INy9yOCZUS4QzADo1iEstHqJksdbCoLwkzCh2Qnpu-9ZvdaWNdbNzp38Pn5FdT63zDpFz0i3fK7hAE6HUl142vgGJUrkH
link.rule.ids 310,311,783,787,792,793,799,4057,4058,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VZYCJR4t44wExkTSP4jhjVRUVaCuGVupW2c4FASJBkA7w6zk7aSoQA0uUOJJlORf5--7xHcCFH3hRGgrtELkggiKR_jmT66o5R_QT5FKY2uHxhA9n3bv59bwBV3UtDCLa5DN0za2N5Se5XhpXWccncxGmWGuDcLXgZbVW7VHxTMgpjC03F6a1K5leJbGzeq4DlV7c6U8GVg7UrWb90V7Fni432zBeratMKnlxl4Vy9dcvycb_LnwH2us6PvZQn1C70MBsD1q9jIj26ye7ZDb90_rVW_DcW4eyWZ4ye8ixqqnEI5NZwkrBJvNVmSmHKJ25zJyM1nhZkbOszCr_MDNYqUwaJljMyCDoWuXFt2F2M5j2h07ViMF5InRROEHiJQoJKEUyJIQmOJeEs6TsJmgkxFLpK3qXJgFPA-FzlRJPiTQxPYx1oHkc7kMzyzM8AKZiIjSIKtLETNOI4GnoKyU0WUwQahkeQsts3-Kt1NpYVDt39PfwOWwOp-PRYnQ7uT-GLZtoZ90jJ9As3pd4SoChUGfWTr4BZD28Ug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=First+International+IEEE+EMBS+Conference+on+Neural+Engineering%2C+2003.+Conference+Proceedings&rft.atitle=Application+of+local+learning+and+biological+activation+functions+to+networks+of+neurons+for+motor+control&rft.au=Hugh%2C+G.S.&rft.au=Henriquez%2C+C.S.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780375796&rft.spage=233&rft.epage=236&rft_id=info:doi/10.1109%2FCNE.2003.1196801&rft.externalDocID=1196801
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375796/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375796/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375796/sc.gif&client=summon&freeimage=true