Application of local learning and biological activation functions to networks of neurons for motor control
Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and idealized activation functions. The neurons in these models frequently fail to incorporate measured spike rates and baseline, background firi...
Saved in:
Published in | First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings pp. 233 - 236 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and idealized activation functions. The neurons in these models frequently fail to incorporate measured spike rates and baseline, background firing and thus the neuronal outputs may be less useful for testing and developing analysis techniques that can eventually be used on experimental data. In this paper we present an approach for creating large-scale networks of neurons that include local learning and more biological features of neuronal spiking and demonstrate that the models are able to learn a generalized two-dimensional reaching task. This approach opens the possibility for the development of more biologically realistic network models with an increased capacity for adaptation, with a possible tradeoff of reduced learning rates. |
---|---|
AbstractList | Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and idealized activation functions. The neurons in these models frequently fail to incorporate measured spike rates and baseline, background firing and thus the neuronal outputs may be less useful for testing and developing analysis techniques that can eventually be used on experimental data. In this paper we present an approach for creating large-scale networks of neurons that include local learning and more biological features of neuronal spiking and demonstrate that the models are able to learn a generalized two-dimensional reaching task. This approach opens the possibility for the development of more biologically realistic network models with an increased capacity for adaptation, with a possible tradeoff of reduced learning rates. |
Author | Hugh, G.S. Henriquez, C.S. |
Author_xml | – sequence: 1 givenname: G.S. surname: Hugh fullname: Hugh, G.S. organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA – sequence: 2 givenname: C.S. surname: Henriquez fullname: Henriquez, C.S. organization: Dept. of Biomed. Eng., Duke Univ., Durham, NC, USA |
BookMark | eNotUEtPAyEQJlETbe3dxAt_YOsACyzHpqmPpNGLnhuWhYZKYcNSjf_e3bRzmO81-Q4zQ9cxRYvQA4ElIaCe1u-bJQVgo1KiAXKFZiAbYJJLxW7RYhgOMA5TXDJ1hw6rvg_e6OJTxMnhkIwOOFido497rGOHW59C2vvJ16b4n_OtO0UzkQGXhKMtvyl_D1NDtKc82S5lfExl3CbFklO4RzdOh8EuLjhHX8-bz_Vrtf14eVuvtpUnkpeKdtC1VlAmNWs4aYTQnNRa152FmlKnSTtmrqPC0YaI1lHOpQECVhlqhGJz9Hju9dbaXZ_9Uee_3eUd7B9eSVke |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CNE.2003.1196801 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EndPage | 236 |
ExternalDocumentID | 1196801 |
GroupedDBID | 6IE 6IK 6IL AAJGR AAVQY ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-2d0dbe6237a3851866a514aa4de0422fa1b237fd26f2816bf2557c010e9c2c693 |
IEDL.DBID | RIE |
ISBN | 0780375793 9780780375796 |
IngestDate | Wed Jun 26 19:26:39 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-2d0dbe6237a3851866a514aa4de0422fa1b237fd26f2816bf2557c010e9c2c693 |
PageCount | 4 |
ParticipantIDs | ieee_primary_1196801 |
PublicationCentury | 2000 |
PublicationDate | 20030000 |
PublicationDateYYYYMMDD | 2003-01-01 |
PublicationDate_xml | – year: 2003 text: 20030000 |
PublicationDecade | 2000 |
PublicationTitle | First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings |
PublicationTitleAbbrev | CNE |
PublicationYear | 2003 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000395739 |
Score | 1.3333368 |
Snippet | Models of networks of neurons involved in motor control have been largely based on concepts derived for artificial neural networks such as global learning and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 233 |
SubjectTerms | Artificial neural networks Biological system modeling Biomedical engineering Biomedical measurements Brain modeling Decoding Large-scale systems Motor drives Neurons Testing |
Title | Application of local learning and biological activation functions to networks of neurons for motor control |
URI | https://ieeexplore.ieee.org/document/1196801 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJyYeLeItD4iJpElcHHusqlYVUisGKnWrbOeMAJEgSAb49ZydNBWIgSVKHMmy7LPuvrvv7gi5ipMotUyYAMEFAhQFeOcc19VwDhBnwJVwucPzBZ8th3er21WH3LS5MADgyWcQulcfy88KUzlX2SBGcREuWWsnlbLO1Wr9KZELODHpkblwjV1R8JoCO5vvNkwZycF4MfHFQMNmzh_NVbxume6R-WZVNaXkJaxKHZqvXwUb_7vsfdLfZvHR-1Y_HZAO5IekN8oRZr9-0mvqyZ_eq94jz6NtIJsWlnoVR5uWEo9U5RmtyzW5M6UuGaJ25VKnF73o0rKgec0p_3Az-EKZOIxGMUVxwGfDiu-T5XTyMJ4FTRuG4AltizJIsijTgGZSqhjaZ4JzhVaWUsMMXAExq2KN_2yWcJuImGuLKCU1iPNAmsRwyY5INy9yOCZUS4QzADo1iEstHqJksdbCoLwkzCh2Qnpu-9ZvdaWNdbNzp38Pn5FdT63zDpFz0i3fK7hAE6HUl142vgGJUrkH |
link.rule.ids | 310,311,783,787,792,793,799,4057,4058,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5VZYCJR4t44wExkTSP4jhjVRUVaCuGVupW2c4FASJBkA7w6zk7aSoQA0uUOJJlORf5--7xHcCFH3hRGgrtELkggiKR_jmT66o5R_QT5FKY2uHxhA9n3bv59bwBV3UtDCLa5DN0za2N5Se5XhpXWccncxGmWGuDcLXgZbVW7VHxTMgpjC03F6a1K5leJbGzeq4DlV7c6U8GVg7UrWb90V7Fni432zBeratMKnlxl4Vy9dcvycb_LnwH2us6PvZQn1C70MBsD1q9jIj26ye7ZDb90_rVW_DcW4eyWZ4ye8ixqqnEI5NZwkrBJvNVmSmHKJ25zJyM1nhZkbOszCr_MDNYqUwaJljMyCDoWuXFt2F2M5j2h07ViMF5InRROEHiJQoJKEUyJIQmOJeEs6TsJmgkxFLpK3qXJgFPA-FzlRJPiTQxPYx1oHkc7kMzyzM8AKZiIjSIKtLETNOI4GnoKyU0WUwQahkeQsts3-Kt1NpYVDt39PfwOWwOp-PRYnQ7uT-GLZtoZ90jJ9As3pd4SoChUGfWTr4BZD28Ug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=First+International+IEEE+EMBS+Conference+on+Neural+Engineering%2C+2003.+Conference+Proceedings&rft.atitle=Application+of+local+learning+and+biological+activation+functions+to+networks+of+neurons+for+motor+control&rft.au=Hugh%2C+G.S.&rft.au=Henriquez%2C+C.S.&rft.date=2003-01-01&rft.pub=IEEE&rft.isbn=9780780375796&rft.spage=233&rft.epage=236&rft_id=info:doi/10.1109%2FCNE.2003.1196801&rft.externalDocID=1196801 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375796/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375796/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780780375796/sc.gif&client=summon&freeimage=true |