Self-recovery method based on auto-associative neural network for intelligent sensors
In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper presents a sensors fault detection and repair method based on Auto-Associative Neural Network (AANN). The error sum of squares (SSE) is introd...
Saved in:
Published in | 2010 8th World Congress on Intelligent Control and Automation pp. 6918 - 6922 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper presents a sensors fault detection and repair method based on Auto-Associative Neural Network (AANN). The error sum of squares (SSE) is introduced as a sensor fault evaluation factor on the basis of the inherent non-linearity & non-orthogonal of the AANN, besides a parallel 9-ary tree algorithm is proposed to locate multi-faulty transducers. The 9-ary tree algorithm can be further extended to estimate the correct value of the faulty transducers while the SSE is less than threshold. A 10-13-5-13-10 structured AANN is constructed to test the self-recovery capability of an insulator contamination status online monitoring networked intelligent sensor model. Results show that, the AANN can be trained within 2 seconds. By altering the corrected step of the 9-ary tree algorithm successively; this method can locate at least two faulty transducers synchronously, besides it can take appropriate strategy for recovering the drift failures and estimating their real value within 5 seconds. |
---|---|
AbstractList | In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper presents a sensors fault detection and repair method based on Auto-Associative Neural Network (AANN). The error sum of squares (SSE) is introduced as a sensor fault evaluation factor on the basis of the inherent non-linearity & non-orthogonal of the AANN, besides a parallel 9-ary tree algorithm is proposed to locate multi-faulty transducers. The 9-ary tree algorithm can be further extended to estimate the correct value of the faulty transducers while the SSE is less than threshold. A 10-13-5-13-10 structured AANN is constructed to test the self-recovery capability of an insulator contamination status online monitoring networked intelligent sensor model. Results show that, the AANN can be trained within 2 seconds. By altering the corrected step of the 9-ary tree algorithm successively; this method can locate at least two faulty transducers synchronously, besides it can take appropriate strategy for recovering the drift failures and estimating their real value within 5 seconds. |
Author | Chen Tie-qun Huang Guo-jian Liu Gui-xiong Chen Geng-xin |
Author_xml | – sequence: 1 surname: Huang Guo-jian fullname: Huang Guo-jian email: gj.h@mail.scut.edu.cn organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China – sequence: 2 surname: Liu Gui-xiong fullname: Liu Gui-xiong email: megxliu@scut.edu.cn organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China – sequence: 3 surname: Chen Geng-xin fullname: Chen Geng-xin email: chengx555@yahoo.com.cn organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China – sequence: 4 surname: Chen Tie-qun fullname: Chen Tie-qun email: tqchen@scut.edu.cn organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China |
BookMark | eNotj81KxDAUhSMoqGNfQDd5gY65SZsmSyn-wYALHVwOSXuj0U4iSWZk3t6Cs_o4cPg455KchhiQkGtgSwCmb9_75_5uydmc27ZtuIATUulOQcObRnbA9Tmpcv5ijEEnJZf8gqxfcXJ1wiHuMR3oFstnHKk1GUcaAzW7EmuTcxy8KX6PNOAumWlG-Y3pm7qYqA8Fp8l_YCg0Y8gx5Sty5syUsTpyQdYP92_9U716eZw3rmoPXVtqbtvRDMLJAZTSowFuJFrJwAm0znTaat2yucQaJ5SVyjkNoEfHmVJjN4gFufn3ekTc_CS_NemwOZ4Xf87jU4E |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WCICA.2010.5554231 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781424467129 142446711X 9781424467112 1424467128 |
EndPage | 6922 |
ExternalDocumentID | 5554231 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-2b5dac3f6c1889da12a6eb601f3ebfa79b9950b5d04f38b68ff9119df2088d7c3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:39:27 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-2b5dac3f6c1889da12a6eb601f3ebfa79b9950b5d04f38b68ff9119df2088d7c3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_5554231 |
PublicationCentury | 2000 |
PublicationDate | 2010-July |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-July |
PublicationDecade | 2010 |
PublicationTitle | 2010 8th World Congress on Intelligent Control and Automation |
PublicationTitleAbbrev | WCICA |
PublicationYear | 2010 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001766262 |
Score | 1.5038818 |
Snippet | In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6918 |
SubjectTerms | 9-ary tree Artificial neural networks Auto-Associative Neural Network Intelligent sensors Noise Self-recovery Testing Training Transducers |
Title | Self-recovery method based on auto-associative neural network for intelligent sensors |
URI | https://ieeexplore.ieee.org/document/5554231 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh7t1jVtmhylOKYwEXS428jHCwxHK1sr6F_vS7sPFA-eEkpKSpLm917y-71HyDU4LmKdykAohg6KxV9RxS4MjGExJCGXuk4HNH7ko0n8ME2mLXKz1cIAQE0-g56v1nf5tjCVPyrrJ4h9kRdN76VSNlqt3XlKytE2jza6mFD2X7P77LYhb61f_JFBpQaQ4QEZb7pueCNvvarUPfP1Kyrjf7_tkHR3Uj36tAWhI9KCvEMmz7Bwgfd1caF-0iZLNPWAZWmRU1WVRaA28_IB1Ae1VAssako4RTuWzrehOku6Qle3WK66ZDK8e8lGwTp_QjBHo6AMIp1YZZjjZiCEtGoQKQ4aPTDHQDuVSi1lEmKjMHZMaC6cw61PWhfh1mNTw45JOy9yOCFUipTZFLgRoY1jY7GIwFkrIpfgMmCnpOOHZPbehMiYrUfj7O_H52S_uYT3rNcL0i6XFVwitpf6qp7Ub8MEpuQ |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jHvSksonf5uDRbl3TpslRimPTbQhuuNvIJwxHK1sr6F_vS7sPFA-eEkpKSpLm917y-72H0K2xlIUy5h4TBBwUDb-iCK3vKUVCE_mUyzId0HBEe5PwcRpNa-huq4UxxpTkM9Ny1fIuX2eqcEdl7QiwL3Ci6T2wqxmt1Fq7E5WYgnUebJQxPm-_Jv3kvqJvrV_9kUOlhJDuIRpuOq-YI2-tIpct9fUrLuN_v-4INXdiPfy8haFjVDNpA01ezMJ6ztuFpfqJqzzR2EGWxlmKRZFnntjMzIfBLqylWEBRksIxWLJ4vg3WmeMVOLvZctVEk-7DOOl56wwK3hzMgtwLZKSFIpaqDmNci04gqJHgg1lipBUxl5xHPjTyQ0uYpMxa2Py4tgFsPjpW5ATV0yw1pwhzFhMdG6qYr8NQaSgCY7VmgY1gIZAz1HBDMnuvgmTM1qNx_vfjG7TfGw8Hs0F_9HSBDqoreceBvUT1fFmYK0D6XF6XE_wNqUGqLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+8th+World+Congress+on+Intelligent+Control+and+Automation&rft.atitle=Self-recovery+method+based+on+auto-associative+neural+network+for+intelligent+sensors&rft.au=Huang+Guo-jian&rft.au=Liu+Gui-xiong&rft.au=Chen+Geng-xin&rft.au=Chen+Tie-qun&rft.date=2010-07-01&rft.pub=IEEE&rft.spage=6918&rft.epage=6922&rft_id=info:doi/10.1109%2FWCICA.2010.5554231&rft.externalDocID=5554231 |