Self-recovery method based on auto-associative neural network for intelligent sensors

In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper presents a sensors fault detection and repair method based on Auto-Associative Neural Network (AANN). The error sum of squares (SSE) is introd...

Full description

Saved in:
Bibliographic Details
Published in2010 8th World Congress on Intelligent Control and Automation pp. 6918 - 6922
Main Authors Huang Guo-jian, Liu Gui-xiong, Chen Geng-xin, Chen Tie-qun
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper presents a sensors fault detection and repair method based on Auto-Associative Neural Network (AANN). The error sum of squares (SSE) is introduced as a sensor fault evaluation factor on the basis of the inherent non-linearity & non-orthogonal of the AANN, besides a parallel 9-ary tree algorithm is proposed to locate multi-faulty transducers. The 9-ary tree algorithm can be further extended to estimate the correct value of the faulty transducers while the SSE is less than threshold. A 10-13-5-13-10 structured AANN is constructed to test the self-recovery capability of an insulator contamination status online monitoring networked intelligent sensor model. Results show that, the AANN can be trained within 2 seconds. By altering the corrected step of the 9-ary tree algorithm successively; this method can locate at least two faulty transducers synchronously, besides it can take appropriate strategy for recovering the drift failures and estimating their real value within 5 seconds.
AbstractList In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper presents a sensors fault detection and repair method based on Auto-Associative Neural Network (AANN). The error sum of squares (SSE) is introduced as a sensor fault evaluation factor on the basis of the inherent non-linearity & non-orthogonal of the AANN, besides a parallel 9-ary tree algorithm is proposed to locate multi-faulty transducers. The 9-ary tree algorithm can be further extended to estimate the correct value of the faulty transducers while the SSE is less than threshold. A 10-13-5-13-10 structured AANN is constructed to test the self-recovery capability of an insulator contamination status online monitoring networked intelligent sensor model. Results show that, the AANN can be trained within 2 seconds. By altering the corrected step of the 9-ary tree algorithm successively; this method can locate at least two faulty transducers synchronously, besides it can take appropriate strategy for recovering the drift failures and estimating their real value within 5 seconds.
Author Chen Tie-qun
Huang Guo-jian
Liu Gui-xiong
Chen Geng-xin
Author_xml – sequence: 1
  surname: Huang Guo-jian
  fullname: Huang Guo-jian
  email: gj.h@mail.scut.edu.cn
  organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 2
  surname: Liu Gui-xiong
  fullname: Liu Gui-xiong
  email: megxliu@scut.edu.cn
  organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 3
  surname: Chen Geng-xin
  fullname: Chen Geng-xin
  email: chengx555@yahoo.com.cn
  organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China
– sequence: 4
  surname: Chen Tie-qun
  fullname: Chen Tie-qun
  email: tqchen@scut.edu.cn
  organization: Sch. of Mech. & Automotive Eng., South China Univ. of Technol., Guangzhou, China
BookMark eNotj81KxDAUhSMoqGNfQDd5gY65SZsmSyn-wYALHVwOSXuj0U4iSWZk3t6Cs_o4cPg455KchhiQkGtgSwCmb9_75_5uydmc27ZtuIATUulOQcObRnbA9Tmpcv5ijEEnJZf8gqxfcXJ1wiHuMR3oFstnHKk1GUcaAzW7EmuTcxy8KX6PNOAumWlG-Y3pm7qYqA8Fp8l_YCg0Y8gx5Sty5syUsTpyQdYP92_9U716eZw3rmoPXVtqbtvRDMLJAZTSowFuJFrJwAm0znTaat2yucQaJ5SVyjkNoEfHmVJjN4gFufn3ekTc_CS_NemwOZ4Xf87jU4E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCICA.2010.5554231
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424467129
142446711X
9781424467112
1424467128
EndPage 6922
ExternalDocumentID 5554231
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-2b5dac3f6c1889da12a6eb601f3ebfa79b9950b5d04f38b68ff9119df2088d7c3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:39:27 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2b5dac3f6c1889da12a6eb601f3ebfa79b9950b5d04f38b68ff9119df2088d7c3
PageCount 5
ParticipantIDs ieee_primary_5554231
PublicationCentury 2000
PublicationDate 2010-July
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-July
PublicationDecade 2010
PublicationTitle 2010 8th World Congress on Intelligent Control and Automation
PublicationTitleAbbrev WCICA
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001766262
Score 1.5038818
Snippet In order to improve the self-recovery capabilities of the IEEE 1451 based intelligent sensors and enhance the level of sensors' intelligence, this paper...
SourceID ieee
SourceType Publisher
StartPage 6918
SubjectTerms 9-ary tree
Artificial neural networks
Auto-Associative Neural Network
Intelligent sensors
Noise
Self-recovery
Testing
Training
Transducers
Title Self-recovery method based on auto-associative neural network for intelligent sensors
URI https://ieeexplore.ieee.org/document/5554231
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh7t1jVtmhylOKYwEXS428jHCwxHK1sr6F_vS7sPFA-eEkpKSpLm917y-71HyDU4LmKdykAohg6KxV9RxS4MjGExJCGXuk4HNH7ko0n8ME2mLXKz1cIAQE0-g56v1nf5tjCVPyrrJ4h9kRdN76VSNlqt3XlKytE2jza6mFD2X7P77LYhb61f_JFBpQaQ4QEZb7pueCNvvarUPfP1Kyrjf7_tkHR3Uj36tAWhI9KCvEMmz7Bwgfd1caF-0iZLNPWAZWmRU1WVRaA28_IB1Ae1VAssako4RTuWzrehOku6Qle3WK66ZDK8e8lGwTp_QjBHo6AMIp1YZZjjZiCEtGoQKQ4aPTDHQDuVSi1lEmKjMHZMaC6cw61PWhfh1mNTw45JOy9yOCFUipTZFLgRoY1jY7GIwFkrIpfgMmCnpOOHZPbehMiYrUfj7O_H52S_uYT3rNcL0i6XFVwitpf6qp7Ub8MEpuQ
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jHvSksonf5uDRbl3TpslRimPTbQhuuNvIJwxHK1sr6F_vS7sPFA-eEkpKSpLm917y-72H0K2xlIUy5h4TBBwUDb-iCK3vKUVCE_mUyzId0HBEe5PwcRpNa-huq4UxxpTkM9Ny1fIuX2eqcEdl7QiwL3Ci6T2wqxmt1Fq7E5WYgnUebJQxPm-_Jv3kvqJvrV_9kUOlhJDuIRpuOq-YI2-tIpct9fUrLuN_v-4INXdiPfy8haFjVDNpA01ezMJ6ztuFpfqJqzzR2EGWxlmKRZFnntjMzIfBLqylWEBRksIxWLJ4vg3WmeMVOLvZctVEk-7DOOl56wwK3hzMgtwLZKSFIpaqDmNci04gqJHgg1lipBUxl5xHPjTyQ0uYpMxa2Py4tgFsPjpW5ATV0yw1pwhzFhMdG6qYr8NQaSgCY7VmgY1gIZAz1HBDMnuvgmTM1qNx_vfjG7TfGw8Hs0F_9HSBDqoreceBvUT1fFmYK0D6XF6XE_wNqUGqLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+8th+World+Congress+on+Intelligent+Control+and+Automation&rft.atitle=Self-recovery+method+based+on+auto-associative+neural+network+for+intelligent+sensors&rft.au=Huang+Guo-jian&rft.au=Liu+Gui-xiong&rft.au=Chen+Geng-xin&rft.au=Chen+Tie-qun&rft.date=2010-07-01&rft.pub=IEEE&rft.spage=6918&rft.epage=6922&rft_id=info:doi/10.1109%2FWCICA.2010.5554231&rft.externalDocID=5554231