Fields of Experts: a framework for learning image priors
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhood...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 860 - 867 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhoods. Field potentials are modeled using a Products-of-Experts framework that exploits nonlinear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field of Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with and even outperform specialized techniques. |
---|---|
AbstractList | We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhoods. Field potentials are modeled using a Products-of-Experts framework that exploits nonlinear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field of Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with and even outperform specialized techniques. |
Author | Roth, S. Black, M.J. |
Author_xml | – sequence: 1 givenname: S. surname: Roth fullname: Roth, S. organization: Dept. of Comput. Sci., Brown Univ., Providence, RI, USA – sequence: 2 givenname: M.J. surname: Black fullname: Black, M.J. organization: Dept. of Comput. Sci., Brown Univ., Providence, RI, USA |
BookMark | eNpNjUtLAzEURoNWsK1dunKTPzBjbm4eE3cytCoUFFG3JdO5KdF5lKSg_nsLuvDbnMWB883YZBgHYuwSRAkg3HX99vRcSiF0CUacsCkIg4Vx4E7ZTFjjtEQr5eSfOGeLnN_FceiwUnLKqlWkrs18DHz5tad0yDfc85B8T59j-uBhTLwjn4Y47Hjs_Y74PsUx5Qt2FnyXafHHOXtdLV_q-2L9ePdQ366LCFYfCmkkkUZFxipEZywaVFsJTWhV64xvti25pkUvg_eawKlGggoG0FQedINzdvXbjUS0OX73Pn1vQBmrEfEH20xI5g |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.160 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Statistics Computer Science |
EISSN | 1063-6919 |
EndPage | 867 vol. 2 |
ExternalDocumentID | 1467533 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-262ee534e674339673634c21bfd4d96abcde9bd3a2faa5e194b214f61368a15b3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-262ee534e674339673634c21bfd4d96abcde9bd3a2faa5e194b214f61368a15b3 |
ParticipantIDs | ieee_primary_1467533 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 2.2246842 |
Snippet | We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 860 |
SubjectTerms | Computer science Image coding Image databases Image denoising Machine vision Markov random fields Nonlinear filters PSNR Statistics Training data |
Title | Fields of Experts: a framework for learning image priors |
URI | https://ieeexplore.ieee.org/document/1467533 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AEycUMH6nB48O1nadq1ciISYYYsRwI233aoiRETYu_vW23YfGePC2vl22Zt37vY_f7yF0QyGVxJFjCAgIrMfXgQrTJNBJGBvD1R33Skzzp3i2jB5XfNVCtw0XBgB88xmM3KWv5aeZPrhU2didagtP2qhtA7eSq9XkUxzHNKnCPLdmNrKJRVNRoG4ai698xiyIBRFlCC-4u0ErJZ56Lb7FOMeT18VzmXohTsbyxwgW74GmPTSvn71sPHkfHQo10p-_ZB3_-3JHaPjN9cOLxosdoxZs-6hXgVNcHf3cmur5D7Wtj7oOqZZCzwOUTF0vXI4zg718cpHfY4lN3fuFLTjG1YiKN7z5sL8xvNtvsn0-RMvpw8tkFlRjGYKNxRpFQGMKwFkEjr_AhGsMY5GmRJk0SkUslU5BqJRJaqTkQESkKImMxQ1xIglX7AR1ttkWThGmKmRgNDeR5JGUFu07gGUhFDAudSjP0MBt1HpXKm-sqz06_9t8gbpeWNUnSC5Rp9gf4MpChkJd-2_lC0Q9tls |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV09T8MwED1BGWAqFBDfeIAxpbHjECMxFapCASEEiK3YyRlViLZqUiH4LfwV_hu2k7QIsSKxxY4UKb7E9-787h3AHsVE-rY4xkeBnvH4sacaSeTFUSPUmqtD7pSYLq_C9l1w_sAfZuBjUguDiI58hnV76c7yk0E8tqmyA_tXG3hSUCg7-PZqArT0-OzEWHOf0tbpbbPtFT0EvJ5xjJlHQ4rIWYCWbM-EZTGxIKa-0kmQiFCqOEGhEiaplpKjCekV9QNtnFwYSZ8rZp47C3MGZ3CaV4dNMji2qjUqAks7ZiaWCsXkDIPa_i_urDVkXih8kScNBLc3aKH9U47FVP7zoHl_fZMne3wrnPmt6Yvzea0qfJarlVNdnuvjTNXj9x9Ckv91ORdhZVrNSK4nfnoJZrBfg2oBv0mxuaVmquxwUc7VYMFi8VzKehmilmX7pWSgiROIztIjIoku2W3EwH9SNOF4Ir0Xs1GT4ag3GKUrcPcnb7kKlf6gj2tAqGow1DHXgeSBlCaesRDSgERkXMYNuQ7L1jDdYa4t0i1ssvH79C7Mt28vL7oXZ1edTVhwMrIuHbQFlWw0xm0DkDK1475TAo9_bckvY9kTmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Fields+of+Experts%3A+a+framework+for+learning+image+priors&rft.au=Roth%2C+S.&rft.au=Black%2C+M.J.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=860&rft.epage=867+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.160&rft.externalDocID=1467533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |