Fields of Experts: a framework for learning image priors

We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhood...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 860 - 867 vol. 2
Main Authors Roth, S., Black, M.J.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhoods. Field potentials are modeled using a Products-of-Experts framework that exploits nonlinear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field of Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with and even outperform specialized techniques.
AbstractList We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach extends traditional Markov random field (MRF) models by learning potential functions over extended pixel neighborhoods. Field potentials are modeled using a Products-of-Experts framework that exploits nonlinear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field of Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with and even outperform specialized techniques.
Author Roth, S.
Black, M.J.
Author_xml – sequence: 1
  givenname: S.
  surname: Roth
  fullname: Roth, S.
  organization: Dept. of Comput. Sci., Brown Univ., Providence, RI, USA
– sequence: 2
  givenname: M.J.
  surname: Black
  fullname: Black, M.J.
  organization: Dept. of Comput. Sci., Brown Univ., Providence, RI, USA
BookMark eNpNjUtLAzEURoNWsK1dunKTPzBjbm4eE3cytCoUFFG3JdO5KdF5lKSg_nsLuvDbnMWB883YZBgHYuwSRAkg3HX99vRcSiF0CUacsCkIg4Vx4E7ZTFjjtEQr5eSfOGeLnN_FceiwUnLKqlWkrs18DHz5tad0yDfc85B8T59j-uBhTLwjn4Y47Hjs_Y74PsUx5Qt2FnyXafHHOXtdLV_q-2L9ePdQ366LCFYfCmkkkUZFxipEZywaVFsJTWhV64xvti25pkUvg_eawKlGggoG0FQedINzdvXbjUS0OX73Pn1vQBmrEfEH20xI5g
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.160
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Statistics
Computer Science
EISSN 1063-6919
EndPage 867 vol. 2
ExternalDocumentID 1467533
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-262ee534e674339673634c21bfd4d96abcde9bd3a2faa5e194b214f61368a15b3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-262ee534e674339673634c21bfd4d96abcde9bd3a2faa5e194b214f61368a15b3
ParticipantIDs ieee_primary_1467533
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 2.2246842
Snippet We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine...
SourceID ieee
SourceType Publisher
StartPage 860
SubjectTerms Computer science
Image coding
Image databases
Image denoising
Machine vision
Markov random fields
Nonlinear filters
PSNR
Statistics
Training data
Title Fields of Experts: a framework for learning image priors
URI https://ieeexplore.ieee.org/document/1467533
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-AEycUMH6nB48O1nadq1ciISYYYsRwI233aoiRETYu_vW23YfGePC2vl22Zt37vY_f7yF0QyGVxJFjCAgIrMfXgQrTJNBJGBvD1R33Skzzp3i2jB5XfNVCtw0XBgB88xmM3KWv5aeZPrhU2didagtP2qhtA7eSq9XkUxzHNKnCPLdmNrKJRVNRoG4ai698xiyIBRFlCC-4u0ErJZ56Lb7FOMeT18VzmXohTsbyxwgW74GmPTSvn71sPHkfHQo10p-_ZB3_-3JHaPjN9cOLxosdoxZs-6hXgVNcHf3cmur5D7Wtj7oOqZZCzwOUTF0vXI4zg718cpHfY4lN3fuFLTjG1YiKN7z5sL8xvNtvsn0-RMvpw8tkFlRjGYKNxRpFQGMKwFkEjr_AhGsMY5GmRJk0SkUslU5BqJRJaqTkQESkKImMxQ1xIglX7AR1ttkWThGmKmRgNDeR5JGUFu07gGUhFDAudSjP0MBt1HpXKm-sqz06_9t8gbpeWNUnSC5Rp9gf4MpChkJd-2_lC0Q9tls
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV09T8MwED1BGWAqFBDfeIAxpbHjECMxFapCASEEiK3YyRlViLZqUiH4LfwV_hu2k7QIsSKxxY4UKb7E9-787h3AHsVE-rY4xkeBnvH4sacaSeTFUSPUmqtD7pSYLq_C9l1w_sAfZuBjUguDiI58hnV76c7yk0E8tqmyA_tXG3hSUCg7-PZqArT0-OzEWHOf0tbpbbPtFT0EvJ5xjJlHQ4rIWYCWbM-EZTGxIKa-0kmQiFCqOEGhEiaplpKjCekV9QNtnFwYSZ8rZp47C3MGZ3CaV4dNMji2qjUqAks7ZiaWCsXkDIPa_i_urDVkXih8kScNBLc3aKH9U47FVP7zoHl_fZMne3wrnPmt6Yvzea0qfJarlVNdnuvjTNXj9x9Ckv91ORdhZVrNSK4nfnoJZrBfg2oBv0mxuaVmquxwUc7VYMFi8VzKehmilmX7pWSgiROIztIjIoku2W3EwH9SNOF4Ir0Xs1GT4ag3GKUrcPcnb7kKlf6gj2tAqGow1DHXgeSBlCaesRDSgERkXMYNuQ7L1jDdYa4t0i1ssvH79C7Mt28vL7oXZ1edTVhwMrIuHbQFlWw0xm0DkDK1475TAo9_bckvY9kTmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Fields+of+Experts%3A+a+framework+for+learning+image+priors&rft.au=Roth%2C+S.&rft.au=Black%2C+M.J.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=860&rft.epage=867+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.160&rft.externalDocID=1467533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon