Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. F...

Full description

Saved in:
Bibliographic Details
Published in2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 3723 - 3732
Main Authors Saito, Kuniaki, Watanabe, Kohei, Ushiku, Yoshitaka, Harada, Tatsuya
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics. To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at https://github.com/mil-tokyo/MCD_DA
AbstractList In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the features as either a source or target and train a feature generator network to mimic the discriminator. Two problems exist with these methods. First, the domain classifier only tries to distinguish the features as a source or target and thus does not consider task-specific decision boundaries between classes. Therefore, a trained generator can generate ambiguous features near class boundaries. Second, these methods aim to completely match the feature distributions between different domains, which is difficult because of each domain's characteristics. To solve these problems, we introduce a new approach that attempts to align distributions of source and target by utilizing the task-specific decision boundaries. We propose to maximize the discrepancy between two classifiers' outputs to detect target samples that are far from the support of the source. A feature generator learns to generate target features near the support to minimize the discrepancy. Our method outperforms other methods on several datasets of image classification and semantic segmentation. The codes are available at https://github.com/mil-tokyo/MCD_DA
Author Watanabe, Kohei
Ushiku, Yoshitaka
Harada, Tatsuya
Saito, Kuniaki
Author_xml – sequence: 1
  givenname: Kuniaki
  surname: Saito
  fullname: Saito, Kuniaki
– sequence: 2
  givenname: Kohei
  surname: Watanabe
  fullname: Watanabe, Kohei
– sequence: 3
  givenname: Yoshitaka
  surname: Ushiku
  fullname: Ushiku, Yoshitaka
– sequence: 4
  givenname: Tatsuya
  surname: Harada
  fullname: Harada, Tatsuya
BookMark eNotzLtOwzAUAFCDQKKUzAws-YGU6_iR6zFKKSAVgRBlrfyUjBonilNE_54BprOda3KRhuQJuaWwohTUfff59r6qgeIKgKn6jBSqQSoYSslrUOdkQUGySiqqrkiR8xcA1BIZcrEg7Yv-if2xL7uDzjmG6KdyHbOd_KiTPZVhmMpdysfRT98xe1euh17HVLZOj7Oe45BuyGXQh-yLf5dkt3n46J6q7evjc9duq0gbMVc1F4yjtBSRUcuEYYq5AMYoLa1XWjTaWO4EUjQOuatDAOAcEa3Dxhi2JHd_b_Te78cp9no67VE0yBWwX48BTF8
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2018.00392
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9781538664209
1538664208
EISSN 1063-6919
EndPage 3732
ExternalDocumentID 8578490
Genre orig-research
GroupedDBID 6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-2453486c18831c35b393df0bb9a6ce9a57abc4d5818bd84d2ff0044888cd87bb3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:52:16 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-2453486c18831c35b393df0bb9a6ce9a57abc4d5818bd84d2ff0044888cd87bb3
PageCount 10
ParticipantIDs ieee_primary_8578490
PublicationCentury 2000
PublicationDate 2018-Jun
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-Jun
PublicationDecade 2010
PublicationTitle 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
PublicationTitleAbbrev CVPR
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002683845
ssj0003211698
Score 2.6337247
Snippet In this work, we present a method for unsupervised domain adaptation. Many adversarial learning methods train domain classifier networks to distinguish the...
SourceID ieee
SourceType Publisher
StartPage 3723
SubjectTerms Feature extraction
Generators
Learning systems
Neural networks
Semantics
Task analysis
Training
Title Maximum Classifier Discrepancy for Unsupervised Domain Adaptation
URI https://ieeexplore.ieee.org/document/8578490
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5zJ09TN_E3OXg0W9skbXIcm2MIkyFOdhv5VSiybrgWxL_el7ZOEQ_e2kIgJOn73sv73vcQuvWabELElgDUUsJ46IgOpSFpJI02USDSmuX7GE8X7GHJly10t6-Fcc5V5DPX949VLt9uTOmvygYCjheTEKAfQOBW12rt71OiWFDRZMj8O4XIJpaiUfMJAzkYvcyfPJfLkyepT33-aKdSocmkg2Zf86hJJK_9stB98_FLovG_Ez1Cve-6PTzfI9Ixarn8BHUaRxM3v_Gui4Yz9Z6tyzWuWmJmKUAjHmdgQACbwNhicGTxIt-VW29IdjB0vFmrLMdDq7Z16r6HFpP759GUNL0USAYOQkEixikTsQmFoKGhXFNJbRpoLVVsnFQ8UdowywG_tRXMRmnqc70QHxsrEq3pKWrnm9ydIazjRAcsYTDasJQnkisqjdVOGK_dY85R16_IalvLZayaxbj4-_MlOvR7UrOvrlC7eCvdNeB8oW-qDf4E8b2mxA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB2xHOBUVrHjAxxTkthO7AMHREFlFUIUcSvxEilCTSvaiOVb-BX-jXESCkJckbglkRzJntG8Gc-bGYAd15NNiMh4CLXUYzywngqk9tJQaqVDX6QVy_cyanfY6R2_m4C3cS2MtbYkn9mmeyxz-aavC3dVtidQvZj0awrlmX15wgBtuH_SQmnuhuHx0c1h26tnCHgZAuPICxmnTEQ6EIIGmnJFJTWpr5RMIm1lwuNEaWY44pYygpkwTV2OE-NCbUSsFMX_TsI0-hk8rKrDxjc4YSSoqHNy7p1iLBVJUfcPCny5d3h7de3YY46uSV2y9dsAlxK_jhvw_rnzirby0CxGqqlffzSF_K9HMwdLX5WJ5GqMufMwYfMFaNSuNKkN1XARDi6S56xX9Eg59DNLEfxJK0MTieiLcELQVSedfFgMnKkc4tJWv5dkOTkwyaAiJyxB50-2swxTeT-3K0BUFCufxQxXa5byWPKESm2UFdp1J9KrsOgk0B1UDUG69eGv_f55G2baNxfn3fOTy7N1mHX6UHHNNmBq9FjYTfRqRmqrVC4C938tsg_JLQQ6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE%2FCVF+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Maximum+Classifier+Discrepancy+for+Unsupervised+Domain+Adaptation&rft.au=Saito%2C+Kuniaki&rft.au=Watanabe%2C+Kohei&rft.au=Ushiku%2C+Yoshitaka&rft.au=Harada%2C+Tatsuya&rft.date=2018-06-01&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=3723&rft.epage=3732&rft_id=info:doi/10.1109%2FCVPR.2018.00392&rft.externalDocID=8578490