Artificial neural network modelling and flood water level prediction using extended Kalman filter

Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages for flood water level prediction, nonlinearity due to input parameters are the major issue to this modelling. A novel Extended Kalman Filter (...

Full description

Saved in:
Bibliographic Details
Published in2012 IEEE International Conference on Control System, Computing and Engineering pp. 535 - 538
Main Authors Adnan, Ramli, Ruslan, Fazlina Ahmat, Samad, Abd Manan, Zain, Zainazlan Md
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2012
Subjects
Online AccessGet full text
ISBN9781467331425
1467331422
DOI10.1109/ICCSCE.2012.6487204

Cover

Abstract Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages for flood water level prediction, nonlinearity due to input parameters are the major issue to this modelling. A novel Extended Kalman Filter (EKF) optimization algorithm was employed in this study to overcome the nonlinearity problem and come out with an optimal ANN for the prediction of flood water level 3 hours in advance. The inputs used in the algorithm were current values of rainfall at the flood location and three upstream locations of river water levels. The BPN model was trained and tested successfully with Root Mean Square Error (RMSE) and loss function (V) close to zero.
AbstractList Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages for flood water level prediction, nonlinearity due to input parameters are the major issue to this modelling. A novel Extended Kalman Filter (EKF) optimization algorithm was employed in this study to overcome the nonlinearity problem and come out with an optimal ANN for the prediction of flood water level 3 hours in advance. The inputs used in the algorithm were current values of rainfall at the flood location and three upstream locations of river water levels. The BPN model was trained and tested successfully with Root Mean Square Error (RMSE) and loss function (V) close to zero.
Author Zain, Zainazlan Md
Samad, Abd Manan
Adnan, Ramli
Ruslan, Fazlina Ahmat
Author_xml – sequence: 1
  givenname: Ramli
  surname: Adnan
  fullname: Adnan, Ramli
  email: ramli324@salam.uitm.edu.my
  organization: Faculty of Electrical Engineering
– sequence: 2
  givenname: Fazlina Ahmat
  surname: Ruslan
  fullname: Ruslan, Fazlina Ahmat
  email: fazlina419@salam.uitm.edu.my
  organization: Faculty of Electrical Engineering
– sequence: 3
  givenname: Abd Manan
  surname: Samad
  fullname: Samad, Abd Manan
  organization: Dept. of Surveying Science and Geomatics, Faculty of Arc., Planning and Surveying Universiti Teknologi MARA 40450, Shah Alam, Selangor, Malaysia
– sequence: 4
  givenname: Zainazlan Md
  surname: Zain
  fullname: Zain, Zainazlan Md
  organization: Faculty of Electrical Engineering
BookMark eNo1kEtOwzAYhI0ACVpygm58gQS_4yyrqNCKSiyAdeXYf5DBcSonpXB7ApTVaEbfzGJm6CL2ERBaUFJQSqrbTV0_1auCEcoKJXTJiDhDMypUyTkVVJyjrCr1v2fyCmXD8EYImdpKE3mNzDKNvvXWm4AjHNKvjMc-veOudxCCj6_YRIfb0PcOH80ICQf4gID3CZy3o-8jPgw_GHyOEB04_GBCZyJufZjoG3TZmjBAdtI5erlbPdfrfPt4v6mX29zTUo454043IMEIWSpGGmk14bKijbCgW2CaUSGolbZpGqmmkGkiLHOgOK2kdnyOFn-7HgB2--Q7k752p1f4N-2MWSs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSCE.2012.6487204
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467331414
1467331430
9781467331432
9781467331418
EndPage 538
ExternalDocumentID 6487204
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i175t-23d8be5ea457620b5c803591b4ce8fe2821441c5cbbb564ce2804c2de631958d3
IEDL.DBID RIE
ISBN 9781467331425
1467331422
IngestDate Wed Sep 03 07:07:46 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-23d8be5ea457620b5c803591b4ce8fe2821441c5cbbb564ce2804c2de631958d3
PageCount 4
ParticipantIDs ieee_primary_6487204
PublicationCentury 2000
PublicationDate 2012-Nov.
PublicationDateYYYYMMDD 2012-11-01
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-Nov.
PublicationDecade 2010
PublicationTitle 2012 IEEE International Conference on Control System, Computing and Engineering
PublicationTitleAbbrev ICCSCE
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001106805
Score 1.5581652
Snippet Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages...
SourceID ieee
SourceType Publisher
StartPage 535
SubjectTerms Adaptation models
Artificial neural networks
Back Propagation Neural Network (BPN)
Data models
Extended Kalman Filter (EKF)
Flood Modelling and Prediction
Floods
Forecasting
Kalman filters
Neural networks
Predictive models
Rain
Rivers
Title Artificial neural network modelling and flood water level prediction using extended Kalman filter
URI https://ieeexplore.ieee.org/document/6487204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh5t16ZJ1h6lbExlIuhgt5GPVxnOOsqG4F9vXtptKB6EQpscSsgL5H38fr9HyLWIrQILMpAgIhegZEWQWpkFSoNKWKzdg_mO8aMcTfj9VExb5GbLhQEADz6DED99Ld9-mDWmynrSedcMxT_33DGruVq7fEqMXSSE525JbETIGdtIOjVj0agOxVHWu8vz53yA0C4WNr_90V_FXy_DAzLeLKxGlbyF65UOzdcvzcb_rvyQdHdEPvq0vaKOSAvKDlG3lQcIuZNHUc7SvzwYnPq-OEhQp6q0tEBQO_103mhFFwguossK6zpoS4qA-Ve6yaHTB7V4VyUt5lh975LJcPCSj4Km00Iwd-7DKmCJTTUIUNyFHyzSwqQo7RdrbiAtwIVlGHcZYbTWQrpJlkbcMGfjBMVqbHJM2uVHCSeEFkjHNkzZDAznvK_coC-0zAoXiUEGp6SD2zNb1mIas2Znzv6ePif7aKKa_HdB2qtqDZfOC1jpK2_-b069r1A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jHvSk4sRvc_BouzVNuvYoZWNzHwhusNtI0lcZzm6UDsG_3ry021A8CIU2OZSQF3gf-f1-j5AH4SUSEgicAETLJChR6oRJEDlSgfSZp8yD9Y7ROOhN-fNMzGrkcceFAQALPgMXP-1dfrLSGyyVNQMTXTMU_zwwfp-Lkq21r6h42EdCWPZWgK0IOWNbUadqLCrdIa8VNftx_Bp3ENzF3OrHPzqsWAfTPSaj7dJKXMm7uymUq79-qTb-d-0npLGn8tGXnZM6JTXIzoh8yi1EyJw9ioKW9mXh4NR2xkGKOpVZQlOEtdNPE4_mdInwIrrO8WYHrUkRMv9Gt1V0OpDLD5nRdIH37w0y7XYmcc-pei04CxNAFA7zk1CBAMlNAsJaSugQxf08xTWEKZjEDDMvLbRSSgRmkoUtrpmxso9yNYl_TurZKoMLQlMkZGsmkwg057wtzaAtVBClJheDCC7JGW7PfF3Kacyrnbn6e_qeHPYmo-F82B8PrskRmqukAt6QepFv4NbEBIW6s0fhG68-sp0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Control+System%2C+Computing+and+Engineering&rft.atitle=Artificial+neural+network+modelling+and+flood+water+level+prediction+using+extended+Kalman+filter&rft.au=Adnan%2C+Ramli&rft.au=Ruslan%2C+Fazlina+Ahmat&rft.au=Samad%2C+Abd+Manan&rft.au=Zain%2C+Zainazlan+Md&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467331425&rft.spage=535&rft.epage=538&rft_id=info:doi/10.1109%2FICCSCE.2012.6487204&rft.externalDocID=6487204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/sc.gif&client=summon&freeimage=true