Artificial neural network modelling and flood water level prediction using extended Kalman filter
Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages for flood water level prediction, nonlinearity due to input parameters are the major issue to this modelling. A novel Extended Kalman Filter (...
Saved in:
Published in | 2012 IEEE International Conference on Control System, Computing and Engineering pp. 535 - 538 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2012
|
Subjects | |
Online Access | Get full text |
ISBN | 9781467331425 1467331422 |
DOI | 10.1109/ICCSCE.2012.6487204 |
Cover
Abstract | Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages for flood water level prediction, nonlinearity due to input parameters are the major issue to this modelling. A novel Extended Kalman Filter (EKF) optimization algorithm was employed in this study to overcome the nonlinearity problem and come out with an optimal ANN for the prediction of flood water level 3 hours in advance. The inputs used in the algorithm were current values of rainfall at the flood location and three upstream locations of river water levels. The BPN model was trained and tested successfully with Root Mean Square Error (RMSE) and loss function (V) close to zero. |
---|---|
AbstractList | Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages for flood water level prediction, nonlinearity due to input parameters are the major issue to this modelling. A novel Extended Kalman Filter (EKF) optimization algorithm was employed in this study to overcome the nonlinearity problem and come out with an optimal ANN for the prediction of flood water level 3 hours in advance. The inputs used in the algorithm were current values of rainfall at the flood location and three upstream locations of river water levels. The BPN model was trained and tested successfully with Root Mean Square Error (RMSE) and loss function (V) close to zero. |
Author | Zain, Zainazlan Md Samad, Abd Manan Adnan, Ramli Ruslan, Fazlina Ahmat |
Author_xml | – sequence: 1 givenname: Ramli surname: Adnan fullname: Adnan, Ramli email: ramli324@salam.uitm.edu.my organization: Faculty of Electrical Engineering – sequence: 2 givenname: Fazlina Ahmat surname: Ruslan fullname: Ruslan, Fazlina Ahmat email: fazlina419@salam.uitm.edu.my organization: Faculty of Electrical Engineering – sequence: 3 givenname: Abd Manan surname: Samad fullname: Samad, Abd Manan organization: Dept. of Surveying Science and Geomatics, Faculty of Arc., Planning and Surveying Universiti Teknologi MARA 40450, Shah Alam, Selangor, Malaysia – sequence: 4 givenname: Zainazlan Md surname: Zain fullname: Zain, Zainazlan Md organization: Faculty of Electrical Engineering |
BookMark | eNo1kEtOwzAYhI0ACVpygm58gQS_4yyrqNCKSiyAdeXYf5DBcSonpXB7ApTVaEbfzGJm6CL2ERBaUFJQSqrbTV0_1auCEcoKJXTJiDhDMypUyTkVVJyjrCr1v2fyCmXD8EYImdpKE3mNzDKNvvXWm4AjHNKvjMc-veOudxCCj6_YRIfb0PcOH80ICQf4gID3CZy3o-8jPgw_GHyOEB04_GBCZyJufZjoG3TZmjBAdtI5erlbPdfrfPt4v6mX29zTUo454043IMEIWSpGGmk14bKijbCgW2CaUSGolbZpGqmmkGkiLHOgOK2kdnyOFn-7HgB2--Q7k752p1f4N-2MWSs |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCSCE.2012.6487204 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1467331414 1467331430 9781467331432 9781467331418 |
EndPage | 538 |
ExternalDocumentID | 6487204 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
ID | FETCH-LOGICAL-i175t-23d8be5ea457620b5c803591b4ce8fe2821441c5cbbb564ce2804c2de631958d3 |
IEDL.DBID | RIE |
ISBN | 9781467331425 1467331422 |
IngestDate | Wed Sep 03 07:07:46 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-23d8be5ea457620b5c803591b4ce8fe2821441c5cbbb564ce2804c2de631958d3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_6487204 |
PublicationCentury | 2000 |
PublicationDate | 2012-Nov. |
PublicationDateYYYYMMDD | 2012-11-01 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-Nov. |
PublicationDecade | 2010 |
PublicationTitle | 2012 IEEE International Conference on Control System, Computing and Engineering |
PublicationTitleAbbrev | ICCSCE |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001106805 |
Score | 1.5581652 |
Snippet | Accurate flood water level prediction are essential for reliable flood forecasting modelling. Although back propagation neural network (BPN) offer advantages... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 535 |
SubjectTerms | Adaptation models Artificial neural networks Back Propagation Neural Network (BPN) Data models Extended Kalman Filter (EKF) Flood Modelling and Prediction Floods Forecasting Kalman filters Neural networks Predictive models Rain Rivers |
Title | Artificial neural network modelling and flood water level prediction using extended Kalman filter |
URI | https://ieeexplore.ieee.org/document/6487204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh5t16ZJ1h6lbExlIuhgt5GPVxnOOsqG4F9vXtptKB6EQpscSsgL5H38fr9HyLWIrQILMpAgIhegZEWQWpkFSoNKWKzdg_mO8aMcTfj9VExb5GbLhQEADz6DED99Ld9-mDWmynrSedcMxT_33DGruVq7fEqMXSSE525JbETIGdtIOjVj0agOxVHWu8vz53yA0C4WNr_90V_FXy_DAzLeLKxGlbyF65UOzdcvzcb_rvyQdHdEPvq0vaKOSAvKDlG3lQcIuZNHUc7SvzwYnPq-OEhQp6q0tEBQO_103mhFFwguossK6zpoS4qA-Ve6yaHTB7V4VyUt5lh975LJcPCSj4Km00Iwd-7DKmCJTTUIUNyFHyzSwqQo7RdrbiAtwIVlGHcZYbTWQrpJlkbcMGfjBMVqbHJM2uVHCSeEFkjHNkzZDAznvK_coC-0zAoXiUEGp6SD2zNb1mIas2Znzv6ePif7aKKa_HdB2qtqDZfOC1jpK2_-b069r1A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9jHvSk4sRvc_BouzVNuvYoZWNzHwhusNtI0lcZzm6UDsG_3ry021A8CIU2OZSQF3gf-f1-j5AH4SUSEgicAETLJChR6oRJEDlSgfSZp8yD9Y7ROOhN-fNMzGrkcceFAQALPgMXP-1dfrLSGyyVNQMTXTMU_zwwfp-Lkq21r6h42EdCWPZWgK0IOWNbUadqLCrdIa8VNftx_Bp3ENzF3OrHPzqsWAfTPSaj7dJKXMm7uymUq79-qTb-d-0npLGn8tGXnZM6JTXIzoh8yi1EyJw9ioKW9mXh4NR2xkGKOpVZQlOEtdNPE4_mdInwIrrO8WYHrUkRMv9Gt1V0OpDLD5nRdIH37w0y7XYmcc-pei04CxNAFA7zk1CBAMlNAsJaSugQxf08xTWEKZjEDDMvLbRSSgRmkoUtrpmxso9yNYl_TurZKoMLQlMkZGsmkwg057wtzaAtVBClJheDCC7JGW7PfF3Kacyrnbn6e_qeHPYmo-F82B8PrskRmqukAt6QepFv4NbEBIW6s0fhG68-sp0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE+International+Conference+on+Control+System%2C+Computing+and+Engineering&rft.atitle=Artificial+neural+network+modelling+and+flood+water+level+prediction+using+extended+Kalman+filter&rft.au=Adnan%2C+Ramli&rft.au=Ruslan%2C+Fazlina+Ahmat&rft.au=Samad%2C+Abd+Manan&rft.au=Zain%2C+Zainazlan+Md&rft.date=2012-11-01&rft.pub=IEEE&rft.isbn=9781467331425&rft.spage=535&rft.epage=538&rft_id=info:doi/10.1109%2FICCSCE.2012.6487204&rft.externalDocID=6487204 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467331425/sc.gif&client=summon&freeimage=true |